When the H0 distribution of TFCE is not uniform

I wrote about Threshold-Free-Cluster-Enhancement (TFCE) before, this time I stumbled upon a weirdly looking H0 diagram. Let me explain: If you simulate data without any effect, you expect that the P(data|H0) distribution is uniform, that is, all p-values are equally likely. Here, I define the p-value as the minimal p-value over time that I get from one whole simulation (1000 permutations per simulated dataset) – I simulated only cluster in time not space (find the notebook here, raw-jl here). When I did this for 100 repetitions, each applying permutation TFCE and calculating the min-p, I got the following histogram of 100 p-values:

TFCE H0 distribution with integration step of 0.4

That does not look uniform at all! What is going on? It turns out, that you can get this kind of “clustering” if your integration step-size is too large. Indeed, I change the integration step from 0.4 to 0.1

TFCE H0 distribution with integration step 0.1

Now it looks much more uniform; I should probably use more repetitions (indeed in full simulations I use 10x as many) – but this already took 500s and I am not prepared to wait longer 😉

Thanks @Olivier Renauld for this explanation!

Categorized: Blog

Tagged:

Leave a Reply