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Abstract

We experience the world through our senses. But we can only
make sense of the incoming information because it is weighted
and interpreted against our perceptual experience which we gather
throughout our lives. In this thesis I present several approaches
we used to investigate the learning of prior-experience and its
utilization for prediction-based computations in decision making.

Teaching participants new categories is a good example to
demonstrate how new information is used to learn about, and
to understand the world. In the first study I present, we taught
participants new visual categories using a reinforcement learning
paradigm. We recorded their brain activity before, during, and
after prolonged learning over 24 sessions. This allowed us to show
that initial learning of categories occurs relatively late during pro-
cessing, in prefrontal areas. After extended learning, categorization
occurs early during processing and is likely to occur in temporal
structures.

One possible computational mechanism to express prior in-
formation is the prediction of future input. In this thesis, I make
use of a prominent theory of brain function, predictive coding. We
performed two studies. In the first, we showed that expectations of
the brain can surpass the reliability of incoming information: In a
perceptual decision making task, a percept based on fill-in from the
physiological blind spot is judged as more reliable to an identical
percept from veridical input. In the second study, we showed that
expectations occur between eye movements. There, we measured
brain activity while peripheral predictions were violated over eye
movements. We found two sets of prediction errors early and late
during processing. By changing the reliability of the stimulus using



the blind spots, we in addition confirm an important theoretical
idea: The strength of prediction-violation is modified based on the
reliability of the prediction.

So far, we used eye-movements as they are useful to under-
stand the interaction between the current information state of the
brain and expectations of future information. In a series of experi-
ments we modulated the amount of information the visual system
is allowed to extract before a new eye movement is made. We
developed a new paradigm that allows for experimental control
of eye-movement trajectories as well as fixation durations. We
show that interrupting the extraction of information influences
the planning of new eye movements. In addition, we show that
eye movement planning time follow Hick’s law, a logarithmic in-
crease of saccadic reaction time with increasing number of possible
targets.

Most of the studies presented here tried to identify causal
effects in human behavior or brain-computations. Often direct
interventions in the system, like brain stimulation or lesions, are
needed for such causal statements. Unfortunately, not many meth-
ods are available to directly control the neurons of the brain and
even less the encoded expectations. Recent developments of the
new optogenetic agent Melanopsin allow for direct activation and
silencing of neuronal cells. In cooperation with researchers from
the field of optogenetics, we developed a generative Bayesian
model of Melanopsin, that allows to integrate physiological data
over multiple experiments, include prior knowledge on bio-physical
constraints and identify differences between proteins.

After discussing these projects, I will take a meta-perspective
on my field and end this dissertation with a discussion and outlook
of open science and statistical developments in the field of cognitive

science.
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General Introduction:
Vision, shaped by
experience

Our sensory systems are remarkably complex. Even in a simple
tasks, like responding to a visual or auditory cue, the total rate of
incoming signals through our senses to the brain is staggeringly
high. The eye alone transfers light from the retina to the lateral
geniculate nucleus (LGN), the former with 65 million photore-
ceptors getting input from the environment (Jonas et al., 1992)
which is condensed to an output of 1 million ganglion cells (Cur-
cio et al., 1990). Hearing has 11.000-16.000 outer cochlea hair
cells (Bredberg, 1968; Nadol, 1988) with around 60.000 efferent
ganglion cells in the auditory nerve (Nadol, 1988). These cells fire
between 0 and 100 times per second (Levine et al., 1992; Warland
et al., 1997). Of course, these numbers and rates are only rough
estimates of information transfer because the information transfer
code is unknown. It follows that the brain is an extremely complex
system that processes a vast amount of incoming information, in
our example ultimately compressing it to a single action: choosing
to press a button. How does the brain do this? What kind of struc-
tural or prior knowledge does it use? In this thesis I investigate
how prior experience of the world and predictive computations
can help process this information.

The focus of this thesis is on the visual sense. The benefits
to study the visual sense are many and here I will give only three



6

general reasons. One, it is commonly regarded as the most im-
portant human sense (Rock and Victor, 1964) dominantly used
in Education, Art and Media. Two, it has a historical advantage
over several other senses due to its beneficial anatomical location
to study it in primates (Felleman and Van, 1991; Tootell et al.,
1988). And three, its the sense with the largest amount of cortex
dedicated to processing its information (Felleman and Van, 1991;
Palmer, 1999; Kaas, 2008) !.

This chapter is structured as follows: I will first introduce
some basics on visual processing. Then I will concentrate on
the role of learning and experience in perceptual processing and
the ubiquitous feedback connections in the visual cortex. These
feedback connections lead us to predictive coding, a computational
algorithm proposed to explain basic brain functioning. I will then
discuss eye movements and finally, ways to study causal influences
in neuroscience.

10Of course, most cortex is inherently multimodal. A slightly less provocative
statement would be, that among the primary sensory cortices, the visual
cortex is the largest.

Chapter 1 General Introduction



1.1 How is the visual system
organized?

In the following a short overview of the visual system is given.
For an in-depth introduction see Palmer (1999). I will start with
the function of the eye, then the LGN, followed by the cortex with
V1 and then the dorsal and ventral stream. Finally, I will discuss
the ubiquitous feedback connections.

Light is transduced to chemical signals in the photoreceptors
of the eye. There are two main types of photoreceptors, rods and
cones. We have many more rods than cones in the retina, but cones
are sensitive to specific, different wavelengths of the light, giving
us the ability to perceive colors. Both rods and cones use proteins
of the family of opsins to transduce light waves to electrochemical
responses. Rhodopsin is used in rods and S/M/L-cone opsins in
cones. Interestingly, a third opsin Melanopsin is expressed in the
retina, not in photoreceptors but directly in special ganglion cells.
I will present further details on Melanopsin in the fifth chapter of
this thesis (Spoida et al., 2016; Ehinger, Eickelbeck, et al., 2016).

The photoreceptors are arranged on the retina in a concentric
pattern with increasing cone density towards the center. The area
with the highest photoreceptors density is called the fovea. It is
the point with highest acuity, that is, resolution. (Purves et al.,
2001).

The spatial arrangement and connectivity of the photorecep-
tors allows one to see color and details using the information from
the cones. The connectivity of ganglion cells in the periphery is
one-to-many, that is, many photoreceptors are integrated by a sin-
gle ganglion cell. This is the reason for a blurred perception in
the periphery. The one-to-one connectivity in the fovea allows us

1.1 How is the visual system organized?



dorsal pathway

optic
nerve

blind spot
Light retina

ventral pathway

Fig. 1.1 A) The eye. Light is transduced to electro-chemical signals at the retina. The
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nerve fibers (ganglion cells) are bundled to the optic nerve and pierce through
the retina at the blind spot, displacing all photoreceptors at that location. B) The
optic nerve is split in left and right visual field and passes through the thalamus
at the LGN. Finally it reaches V1. C) Visual processing is commonly split in
two main pathways: The ventral "what" and dorsal "where" pathways. Image-
Sources: Public Domain, M.P. Nieto (Wikimedia Commons), "Selket" (Wikimedia
Commons)

to have a region with highly-detailed perception. Having only a
single fovea makes it necessary to rotate the retina in a controlled
way. We will discuss these eye movements in more detail in a later
section, but make ample use of them in Chapter 4 & 5.

The ganglion cells are collected to a cell bundle, the optic
nerve. The area where the optic nerve passes through the retina
is called the physiological blind spot. At this location, no pho-
toreceptors exist. Nevertheless, we do not perceive nothing: The
brain automatically fills in information from the surrounding vi-
sual input (Figure 1.1). This is discussed in a later section, and
we make use of the blind spot in chapter 3 & 4. The optic nerve
mostly terminates in the thalamus, specifically in the LGN. A small
portion targets the superior colliculus directly, bypassing further
processing at the cortex. From the LGN, information is transferred
to the superior colliculus and mainly the striate cortex (V1) in the
neocortex. The properties and calculation of V1 cells are usually
understood in terms of simple and complex cells. They both act as
edge or grating detectors. The simple cell classically has a fixed
receptive field, the complex cell has a stronger spatial invariance

Chapter 1 General Introduction



(Carandini et al., 2005). In total, V1 is often referred as a filter
bank (Olshausen and Field, 1996) of Gabor patches, or as local
edge detectors. The reality is a lot more complex. There are strong
context effects, that is, the activity of one cell depends on activity
of neighboring cells. This is easily explained by inhibitory input
from neighboring cells in V1 (Haslinger et al., 2012). The edge-
detectors should not only be understood in the spatial domain,
that is in x- or y-coordinates, but edges can also be observed in a
spatio-temporal domain (DeAngelis et al., 1995), that is changing
position over time. Some of these cells respond to motion (Hubel
and Wiesel, 1968; Adelson and Bergen, 1985), often attributed
only to higher level areas. V1 is one of the better understood
cortical areas. Nevertheless a multitude of theories on its function
in the larger context of the brain exists. They range from feature
detection (Olshausen and Field, 1996; Bell and Sejnowski, 1997),
over a necessary part of conscious perception (Keliris et al., 2010),
to a cognitive blackboard (Roelfsema and Lange, 2016). It is quite
likely, that this large cortical area is used for many different pur-
poses, depending on the prevailing requirement of the system (TS
Lee et al., 1998).

Continuing on from V1, there is evidence for a ventral and a
dorsal pathway, loosely separated (Mishkin and Ungerleider, 1982).
The ventral stream dominantly resolves the questions "what" and
"how". This visual stream analyses features with more and more
complex structure (Riesenhuber and Poggio, 2002). It culminates
in areas that are highly selective for specific categories and objects.
Areas of high interests for researchers are the face fusiformus area
(FFA) and the parahippocampal place area (PPA). They are both
located in the inferiotemporal cortex (IT). In the anterior path
of IT very specific neurons were found, including the so-called
grandmother cell (Quiroga et al., 2005) which is so specific that it
responds only to ones own grandmother. We will discuss in Chapter
2 how such high specificity can arise during category learning.

1.1 How is the visual system organized?
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The second, dorsal, stream, roughly relates to the location,
the where of objects. Areas of interest here are usually V3, middle
temporal (MT) and higher level areas as for example lateral intra-
parietal cortex (LIP). MT is famous for directed motion detection
(Maunsell and Essen, 1983). The LIP is interesting, because it
also shows strong connections to the ventral path. It is an area
involved in the generation of saccades (Goldberg et al., 2006),
the integration of rewards (Platt and Glimcher, 1999), in work-
ing memory (Gnadt and Andersen, 1988) and possibly episodic
memory (Wagner et al., 2005). This concludes our summary of the
visual hierarchy and the two perceptual pathways.

1.1.1 Experience shapes perception

It is unlikely, that the whole hierarchy presented above is
predetermined by the genetic code and anatomical structure just
develops without external influence. Instead, it is highly likely that
the massive exposure to perceptual information we receive while
growing up, strongly influences the structure of the brain. Here I
present three examples that show how our organism adapts to the
visual environment by learning from exposure.

The first example shows how developmental experience shapes
what we can experience. The second one shows how the functional
definition of cortical areas can be formed through exposure to
certain categories. The third one shows how we learn new cate-
gories and how such categories can influence how we perceive the
world.

In a seminal study, Blakemore and Cooper (1970) raised a
cat in an environment, where its only visual input was daily expo-
sure for five hours to vertical bars using the apparatus shown in
Figure 1.2A. After five month of maturation, the cats were tested

Chapter 1 General Introduction



control deprived
monkey monkey
different category same category

Fig. 1.2 A) Experiment of Blakemore and Cooper (1970). A cat is raised in an environment
with only vertical bars but no horizontal ones. Subsequent tests show, that the
cat is unable to see horizontal features. B) Arcaro et al. (2017) raised a monkey
without seeing another monkey or human face. They showed for the first time, in
opposition what was thought before, that also high level areas like FFA are shaped
through experience. C) Gauthier and Nelson (2001) invented these so-called
"greebles" to teach completely new categories to their subjects. Others show that
this also influences the features that are extracted from the environment.

for direction selectivity and startling response of horizontal bars
using behavioral and electrophysiological methods. Neither electro-
physiological responses to horizontal bars, nor a startling response
could be found. The cats acted as if they were blind towards hor-
izontal bars. Because orientation selectivity to horizontal bars is
such a well described feature of V1, one can conclude that the
environment is critical for the visual development. This is in line
with a study on ferrets, that show that silencing neurons in V1
precludes directional cells from forming (Chapman et al., 1996),
but goes against a recent study which genetically silenced visual
feedforward signals in mice (Hagihara et al., 2015). It is clear
that behavioral and perceptual exposure to the environment is
necessary to experience basic features of the environment.

Is this also true for higher areas and thus more complex fea-
tures? In a recent study, Arcaro et al. (2017) show that monkeys
do not form a monkey face-selective area, if they were not exposed
to monkey face-like stimuli (Figure 1.2B). This shows that high

1.1 How is the visual system organized? 1
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level cognitive areas are also shaped by exposure. Alternatively, it
is possible, that distinct functional areas exist based on structure
in the first place, but then are overwritten, or lost, by subsequent
lack of exposure to the right stimuli.

In order to differentiate these possibilities, a pre- and post-test
experimental design is needed. Such example can be found in the
vast literature of category learning. In a typical category learning
task, subjects are confronted with a new category. This new cate-
gory could be based on novel objects (e.g. two types of greebles
(Gauthier and Nelson, 2001)). Subjects learn to extract the features
necessary to separate the two sets of one category (Figure 1.2C).
It has been shown, that such category-experts activate areas (in
this case FFA) similar to face-experts but for novel categories (Gau-
thier, Skudlarski, Gore, and AW Anderson, 2000; Gauthier and
Nelson, 2001). Sigala and Logothetis (2002a) showed that ex-
tensive category learning in macaque monkeys leads to neurons
that specifically spike for features that help differentiate categories,
but not for others. They used Brunswick face stimuli (identical to
ours in Chapter 2) with two diagnostic dimensions, eye height and
eye width, and two non-diagnostic dimensions, noise height and
mouth height. After category learning, most cells in the inferior
temporal cortex that were specific to the stimuli, responded to the
diagnostic dimensions, but only rarely did a neuron respond to the
non-diagnostic dimension. Thus in the inferior temporal cortex,
features that are specific to categories are extracted. Based on
these three findings it follows that experience shapes perception.

1.1.2 Feedback in the visual cortex

So far we only discussed the feedforward stream. But feedback
is ubiquitous in the cortex. Figure 1.3 shows that most areas are
connected both ways to each other. We will see later, that the many

Chapter 1 General Introduction
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Fig. 1.3 A) Felleman and Van (1991) B) The updated map by Markov, Vezoli, et al. (2014)
highlights the plentiful feedback connections. The hierarchy is build based on the
ratio of incoming feedforward (lower level) and outgoing feedback connections
(higher level)

feedback connections may allow the cortex to implement genera-
tive models in the framework of predictive coding. In LGN, around
90% of incoming fibers are not from the retina (Updyke, 1975;
Cudeiro and Sillito, 2006), with around 60% of those incoming
fibers representing local feedback and 30% cortical feedback. In V1
at least 85% of incoming fibers are local feedback from inhibitory
cells (Markov, Ercsey-Ravasz, et al., 2013). Only around 2-3% of
total connections are input-connections from the LGN. In the LGN
it seems that the feedforward connections are the active drivers of
the area, that is feedforward connections can elicit spikes. Feed-
back connections only modulate the response (Crick and Koch,
1998) and do not elicit spiking on their own. This classical view of
modulation-only feedback has long been thought to generalize to
the whole cortex (Sherman and Guillery, 1998). There are certain
exceptions from this rule. For instance Mignard and Malpeli (1991)
showed, that V1 neurons in supragranular layers can be also be
activated by feedback connections from V2. More recent examples
are the work of Shermann (Covic and Sherman, 2011; De Pasquale

1.1 How is the visual system organized? 13
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and Sherman, 2011) that shows similar feedback driving activity
in V1/V2 (and also other senses like auditory A1/A2). The general
observation of feedback modulation and feedforward driving seems
nevertheless quite accurate.

In humans, V1 feedback effects are reported in many different
paradigms: E.g. visual imagery (Albers et al., 2013; Harrison and
Tong, 2009), scene segmentation (Mumford et al., 1987; Lamme,
1995; Roelfsema, Lamme, et al., 2002), or perceptual decision-
making (Roelfsema and Spekreijse, 2001; Nienborg and Cumming,
2009; Kok et al., 2012). Feedback signals are even more numerous
the higher we follow the visual stream. In the visual cortex, it is
estimated that more than two thirds of all connections are feedback
connections (Markov, Vezoli, et al., 2014).

We can try to summarize the visual cortex as a hierarchical
system which analyses the incoming data with increasing complex-
ity of features. Noteworthy are the abundant modulatory feedback
connections that in some cases even generate top-down activity.
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1.2 Formalization of experience as prior
information

Perception through our senses depends on the feedforward
information passed through the cortex. But how is this input inter-
preted and combined with knowledge about our world? What are
all these feedback connections used for? One popular explanation
of the algorithmic level? of the brain (Marr, 1982) is termed predic-
tive coding. It is usually referred to in the context of the Bayesian
Brain and will be introduced in the following paragraphs. First,
I need to introduce a mathematical formalism that allows one to
describe the integration of prior experience and current informa-
tion: Bayes’ theorem. In words it states the following: We try to
understand the world given some sensory input, the probability
of some world state © given our incoming data D. We cannot
access this directly, but we can simulate or calculate p(D|©) (the
likelihood): the probability that we get this incoming data, given
all possible states of the world as we currently understand it. We
combine this likelihood with p(©), the prior, the probability that a
certain state of the world could occur.

The formula is simple:

p(D|O) x p(© likelihood * prior
p(o|p) = U9 <p(O) -
p(D) normalization

If we adopt a Bayesian notion, everything we learn about the

world is assumed to be coded in a prior and a likelihood function.

Learning the probability of certain states in the world will update
our prior function. Learning about the mechanisms of the world

2The algorithmic level (how is it calculated?) is right in between the computa-

tional level (what is computed/the goal) and the implementation level (how
is it done in the brain)

1.2 Formalization of experience as prior information
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will also change our likelihood function. Integrating both, prior
knowledge and current data will lead to our subjective probability
distribution of what is out there in the world.

Let us take a simple example of inferring whether a dark
silhouette on a foggy morning is a human or a lantern. For the
likelihood function, the brain would need to calculate how likely it
is, to see such a dark silhouette given that it could be a human and
given that it could be a lantern. This is a type of forward simulation.
The prior would encode that e.g. in the early morning it is much
more likely to see a lantern than a human (in a different context,
such as a rural environment, these prior probabilities could be
drastically different). Combining both using Bayes’ rule would
allow the brain to perform a (Bayes optimal) decision on whether
to perceive the silhouette as a human or a lantern (in this case,
if the likelihood would show no preference, i.e. 50:50, but the
prior would prefer a lantern, the brain should decide to perceive a
lantern).

It is far from clear, whether the brain actually implements
and uses Bayes’ rule. There are many examples for which per-
ceptual decisions are non-optimal (for recent reviews see Rahnev
and Denison, 2018; Rahnev, 2017). But in other areas optimality
has been shown, for instance in motor related areas (Darlington
et al., 2017). It is widely accepted, that using a full probability
distribution over all possible states in the world is impossible be-
cause there are simply too many possible states. It is even difficult
to imagine, that the brain holds a single continuous probability
distribution, without somehow approximating it. Luckily, there are
many heuristics and shortcuts to approximate Bayes-like behav-
ior. One popular example for an approximate Bayesian inference
scheme is variational Bayes. There, the posterior is approximated
by a simpler function that can be easily summarized (for instance,
a Gaussian distribution, ranging from negative infinity to posi-
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tive infinity, is completely described by only two parameters, the
mean and variance). In higher dimensions, only the means and
a covariance-matrix would suffice to describe the whole posterior
distribution.

It is currently up to debate, whether the brain uses some
kind of (variational) Bayesian inference (K Friston, 2010). The
discussion is convoluted by an unclear test of what represents a
Bayes optimal observer, and further by heuristics that can look and
act like Bayes in a limited set of situations, but are not full Bayes
(Rahnev, 2017; Goeke et al., 2016). To better understand how
Bayesian inference could be implemented in the brain, we will have
a look at the algorithmic level and discuss predictive coding.

1.2 Formalization of experience as prior information
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1.3 Predictive coding

As we saw before, feedback ingrains every area of the brain.
Therefore, it is only reasonable to think of possible computations
that such a structure allows for. A quite popular and influential
idea is predictive coding (Srinivasan et al., 1982; Mumford, 1992;
Rao and DH Ballard, 1999; K Friston, 2005). The central idea to
this theory is that "feedback connections from a higher- to a lower-
order visual cortical area carry predictions of lower-level neural
activities, whereas the feed-forward connections carry the residual
errors between the predictions and the actual lower-level activities"
(Rao and DH Ballard, 1999).

The brain is often assumed to be generative, that is, the brain
is actively generating a representation of the outside world (K
Friston, 2005). This allows for an efficient computational code if
predictive coding is employed. When the predictions of the world
are good, less activity and thus less energy needs to be used to
perform the needed computations. There exists ample evidence
that can be interpreted as a predictive code in the brain (Huang
and Rao, 2011), for instance spatial and temporal predictions in
the retina (Huang and Rao, 2011) or the LGN (Dan et al., 1996). In
higher areas, much evidence is compatible with predictive coding,
but direct tests are quite difficult to perform (Aitchison and Lengyel,
2017).

1.3.1 Predictive Coding and the Bayesian
brain

We will now discuss, how predictive coding and the Bayesian
brain are related. As we saw previously, predictive coding can be
understood as an algorithmic representation of cortical processing
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(Aitchison and Lengyel, 2017). The idea of the Bayesian brain
is, that the brain uses a probabilistic framework and performs
Bayesian inference for perceptions about the world. It is possible
to combine these two ideas (Aitchison and Lengyel, 2017) with
the following rationale: Predictions are the integral of posterior
of latent states of the world. That is, the predictions are directly
represented in the posterior p(0|D). Following the saying "the pos-
terior of today is the prior of tomorrow", one can use the posterior
as a prior distribution for the next time step 3. The amount of up-
dating between the prior and the posterior (that is, the difference
of the likelihood and the prior) is the prediction error. In other
words, one has an expectation, a prediction about the future (the
prior), incoming information is evaluated in the generative model
(likelihood), there is potentially a mismatch between prior and
likelihood (prediction errors) and only this prediction error needs
to be known to the higher level area (which produced the prior)
to calculate the new expectation (the posterior, or prior of the
next step). Such a scheme might seem unlikely to be represented
directly in the brain (see e.g. Kwisthout and Rooij, 2013, for a
discussion on possible intractabilities), but recent modeling work
with spiking model networks show that predictive coding in the
Bayesian brain is possible (Boerlin and Deneve, 2011). One last
point: though it seems quite reasonable to combine predictive cod-
ing and the Bayesian brain, one could have predictive coding in the
brain without Bayesian principles (Aitchison and Lengyel, 2017)
and vice versa. In chapter 3 and 4 I discuss two experiments that
make use of the predictive coding framework and which show how
predictions and expectations are a hierarchical system (Ehinger,
Konig, et al., 2015) and influence our perception(Ehinger, Hiusser,
et al., 2017).

%It is usually not made explicit what timescale is meant. Posterior updating can
happen over many different timescales

1.3 Predictive coding
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1.3.2 Prediction and action

In recent years, several theories have emerged that ultimately
try to combine the predictive coding theory with the Bayesian brain
in order to explain phenomenons discussed in the philosophy of
mind. Especially enactivism (E Thompson and Varela, 2001), the
extended mind (Clark, 2013), and developments based on the
sensory-motor account of visual perception (Seth, 2014; O’'Regan
and Noé, 2001) are making use of this "predictive brain". What is
strictly common in all of these accounts is the focus on actions (see
also AK Engel et al., 2013). Indeed, in the popular Bayesian brain
hypothesis, popularized by Friston (K Friston, J Kilner, et al., 2006;
K Friston, 2010; McGregor et al., 2015), there is only a conceptual
distinction between actions and perceptions.

Eye movements are the perfect example for this, as they rep-
resent actions and completely determine the input for visual per-
ception. K Friston, Adams, et al. (2012) suggest that percepts
are hypotheses, and that "saccades [can be used] as [perceptual]
experiments" to test these hypotheses. As I will show in the next
paragraphs, using eye movements as actions that test hypotheses
(percepts) has many benefits but also challenges. Some of the
shortcomings I will address in a newly developed paradigm in
chapter 5 (see also Ehinger, Kaufhold, et al., 2018). The primary
requirement, actual prediction errors over eye movements, are
tested in chapter 4.

1.3.3 Eye movements as perceptual
experiments

In the following I want to show my motivation to use eye
movements in several of my works. Besides the above mentioned
enactive theoretical foundation, there are many pragmatic reasons
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why one should be interested in eye movements. As shown in
the beginning of the chapter, by moving the eye, the retina can
sample a large part of visual space in a short time. Moving the
eye is a necessity, as only a small part of our visual scene can be
perceived in great detail (at the fovea) with everything else blurred
to some degree (the peripheral vision). Because eye movements
are the most common action we perform throughout our lives, even
more often than our heart beats, they are likely quite optimized for
optimal decisions where and when to look next.

Eye movements have many beneficial properties that allow us
to understand the brain in great detail. First, eye movements are
essential for many different processes. For example the control
of eye movements have large influences on language processing
and reading (Rayner, 2009), attention (Shepherd et al., 1986),
eye movements are impaired in psychiatric disorders Hutton and
Ettinger, 2006 and as we show are a prominent decision making
process (Ehinger, Kaufhold, et al., 2018). Second, they are the
prime example of the overt attentional system. Where and how
long we look at things usually implies uncertainty of the respective
foveated stimulus and attentional focus. And third, as already men-
tioned, they occur in high number. Because each eye movement
gives us a new data observation, the high rate allows us to average
over many trials and oppose the low signal-to-noise ratio of e.g.
EEG measurements (see chapter 3).

1.3.4 Predictions over eye movements

We constantly move our eyes and thus, the visual snapshot
of the world. Nevertheless, we have a very stable percept of the
world. One mechanism that could explain this stability is based
on predictive remapping. That is, there is a temporal prediction
component in the visual cortex that allows us to integrate current

1.3 Predictive coding
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peripheral with future foveal content (Crapse and MA Sommer,
2008). Indeed, trans-saccadic remapping has been observed in
behavior and physiology (Rolfs et al., 2011; Melcher, 2008; He
et al., 2018). Recent evidence suggests, that this remapping pro-
cess occurs only for attended locations and not the whole visual
field (Szinte et al., 2018). Should forward mapped prediction be
violated, then we would expect larger prediction errors to occur
(assuming predictive coding). It has not been shown, whether pre-
diction errors over eye movements actually occur. We conducted
an experiment (Chapter 3) to find out whether prediction errors
due to violation of predictions over eye movements can be elicited
and recorded in the human EEG. We introduced an additional in-
teraction about how the peripheral prediction was formed, either
veridically through peripheral information, or through fill-in in the
blind spot a, by definition, unreliable prediction.

1.3.5 Predictions based on fill-in in the blind
spot

One way to investigate the generative models and possible
prediction errors is offered by the physiological blind spot. As
introduced before, the physiological blind spot covers the area of
the eye where no photoreceptors exist, which nevertheless has a
percept. This percept is called fill-in. The process that generates
this fill-in is still unclear, but the most likely explanation is based
on feedback signals from extrastriate cortex (Komatsu, 2006). If
we combine a filled-in percept with the idea of predictive coding,
this would mean that we can have predictions based on filled-in
content.

In chapter 3, I will discuss an experiment that tries to answer
the question whether we make use of those internally generated,
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filled-in predictions in a different way, than normal predictions
based on veridical information.
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1.4 Randomization and the
quasi-experimental nature of eye
movements

"Correlation does not mean causation". But science would
be quite uninteresting if we could not make statements on the
mechanisms, the causes of the world. In order to make causal state-
ments, one needs the additional procedure of randomization of
subjects and experimental control over the independent variables
of interest (for a formal causal calculus see the do-calculus by Pearl
2009, see also Cook et al. 2002). In many experimental designs, it
is possible to generate factuals and counterfactuals, for example
"intervention" and "no-intervention" (control). If all other factors
which could possibly influence the conclusions are appropriately
randomized, one can conclude causal relations (Cook et al., 2002).
Of course, factuals and counterfactuals again imply that one can
assert control over the system to be studied. It is not easily possible
to do this in every system. In cases where it is not possible, only
quasi-experimental designs can be used (Campbell and Stanley,
1963) and strong assumptions are needed to argue for causality.
For instance in unrestricted viewing experiments, eye movements
are not controlled by the experimenter. That means there is no
direct control over fixation duration, saccade amplitude, fixation
location or the geometry of the trajectories. That is, whenever we
try to predict an experimental outcome by one of these variables,
the results might be biased to some extent because the indepen-
dent variable was not controlled for and there could be additional
confounders present. For instance, the causal statement: "Longer
fixation durations cause higher accuracy in a search task” is not a
valid causal inference. There could be a hidden process that both
prolongs fixation durations and cause higher accuracy at the same
time. We would need to force subjects to look at certain search tar-
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gets for a experimentally controlled time, thereby experimentally
controlling fixation duration, to make such inferences. To conclude:
In order to study causal relations of unrestricted eye movements
we need new experimental designs that allow for experimental
control of the saccade parameters of interest. In chapter 5 we will
see a new paradigm that can be used exactly for this.

1.4 Randomization
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1.5 Ways to study causal interactions:
Optogenetics

Transferring these thoughts to the brain, it becomes clear
that if one can only experimentally control behavioral factors, it
is difficult to assert the exact causal mechanisms of the ongoing
neural processes. This situation could be improved enormously
if we could act upon certain areas or cells of the brain directly. A
game-changer in this regard has been optogenetics, first introduced
in 2005 (Boyden et al., 2005; X Li et al., 2005). When shining
light at optogenetical proteins, they can open or close ion channels
and thereby activate or silence single neurons or whole areas.
The impact of optogenetics on biology and especially the field of
neuroscience is immense (Boyden, 2015; Fenno et al., 2011; Pama
et al., 2013).

In order to use optogenetics, a number of different naturally
light-active proteins (like the opsins in the retina) can be chosen
from. Optogenetic agents are usually inserted in cells using a
viral vector. This can become problematic when one needs to
both silence and activate neurons. In such a case, two different
opsins are needed. Two viral vectors are commonly used, but the
chance that a cell expresses both proteins at the same time is small.
Therefore new opsins are currently developed that combine both
silencing and activation attributes depending on the wavelength
of the light. One such protein, Melanopsin, naturally occurs in
photosensitive retinal ganglion cells in the retina. Melanopsin is a
g-coupled receptor that is silenced by reddish light, and activated
by bluish light. Because daylight contains large proportions of blue
light and the sun turns red in the evening, the direct connectivity
to the hypothalamus and the influence on our circadian rhythm
seems reasonable (Hankins et al., 2008; Do and Yau, 2010).
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Besides that Melanopsin can activate and deactivate a cell
depending on the wavelength of the activating light, it also stays
activated for up to half an hour once activated. It can be therefore
understood as a cellular "switch". We were recently involved in a
study to systematically study the behavior of Melanopsin (Spoida
et al., 2016) and developed a Bayesian generative model of the
kinetics of Melanopsin as described in chapter 6.

1.5 Optogenetics
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1.6 Overview over this thesis

In the next chapter I will discuss a MEG study on how we form
new categories from repeated exposure (Kietzmann, Ehinger, et al.,
2016). In the third chapter, I will discuss a study on predictive
coding, prior knowledge and the physiological blind spot (Ehinger,
Hausser, et al., 2017). The fourth chapter directly addresses the
question of prediction in a context of eye movements as actions
using EEG (Ehinger, Konig, et al., 2015; Konig et al., 2016). The
fifth chapter describes a study on information uptake, the relation
to eye movements and experimental control of fixation durations
(Ehinger, Kaufhold, et al., 2018). The sixth chapter introduces the
methodological and statistical framework of Bayesian generative
models based on the example of Melanopsin’s kinetics (Spoida
et al., 2016; Ehinger, Eickelbeck, et al., 2016).
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2.1 Layman’s summary

Throughout our lives, we have to learn new categories. These
categories help to make sense of the world, and offer us a way to
organize our sensations. In our study, we let participants learn two
new categories based of faces and measured their brain activity
before, during and after learning.

At the beginning of learning, activity related to category recog-
nition occurs in frontal regions of the brain usually associated with
cognitive control, planning and rule-based learning. Only after
a long learning period, we found this signal much earlier and in
temporal areas of the brain. These areas are usually associated
with stimulus feature analysis. Our study helps to resolve the
mystery, of why some studies find frontal category learning and
others temporal category learning. Our data suggest that in the
beginning of learning, a flexible category extraction is used based
on frontal areas. An example would be the difference between
birds and mammals: they can be distinguished simply by knowing
the fur to wings ratio. The second category learning type is more
exhausting to learn, but arguably more automatic. A bird expert
would probably recognize the differences between two bird species
instantaneously and most likely, he will be one of a few people
that can do it at all - he has had much more exposure to category
examples. Thus the features of the category difference seem to be
ingrained into his visual system. Only due to our very long train-
ing time, we were able to show that the computation of category
extraction changes.
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2.2 Extensive training leads to temporal
and spatial shifts of cortical activity
underlying visual category
selectivity

The human visual system is able to distinguish naturally occur-
ring categories with exceptional speed and accuracy. At the same
time, it exhibits substantial plasticity, permitting the seamless and
fast learning of entirely novel categories. Here we investigate the
interplay of these two processes by asking how category selectivity
emerges and develops from initial to extended category learning.
For this purpose, we combine a rapid event-related MEG adapta-
tion paradigm, an extension of fMRI adaptation to high temporal
resolution, a novel spatiotemporal analysis approach to separate
adaptation effects from other effect origins, and source localization.
The results demonstrate a spatiotemporal shift of cortical activity
underlying category selectivity: after initial category acquisition,
the onset of category selectivity was observed starting at 275ms
together with stronger activity in prefrontal cortex. Following ex-
tensive training over 22 sessions, adding up to more than 16.600
trials, the earliest category effects occurred at a markedly shorter
latency of 113ms and were accompanied by stronger occipitotem-
poral activity. Our results suggest that the brain balances plasticity
and efficiency by relying on different mechanisms to recognize new

and re-occurring categories.

2.2 Abstract Ehinger 2016
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2.3 Introduction: Category Learning

One of the most essential tasks of our visual system is to make
sense of the complex signals it receives from the world around
us. A central aspect of this is the ability to group objects into
various categories, allowing for considerable simplification, gen-
eralization and supporting higher cognitive function. To advance
our understanding of the underlying cortical mechanisms, a large
body of experimental work focuses on temporal aspects of cat-
egory selectivity, asking for the earliest point in time at which
category information is extracted. As a result, we now have ample
psychophysical and electrophysiological evidence that naturally oc-
curring categories can be extracted in only little more than 100ms
of processing (Sugase et al., 1999; J Liu et al., 2002; H Liu et al.,
2009; Hung et al., 2005; Kirchner and Thorpe, 2006; Carlson,
Hogendoorn, et al., 2011; Carlson, Tovar, et al., 2013; Cichy et
al., 2014). However, apart from the necessity for fast and robust
categorization of re-occurring categories, our ever-changing en-
vironment poses the additional challenge to retain considerable
plasticity in order to support the rapid learning of entirely novel
categories. Here, the study of naturally occurring categories pro-
vides only limited possibilities, as it focuses on categories with
which we already have extended experience (for instance, all of
us can be considered face- and house-experts, as these categories
play a vital role in our everyday life). It therefore remains an
open question, how cortical representations and the temporal dy-
namics of category selectivity develop from the initial learning
of a category towards category expertise. To elucidate this is-
sue, we performed a longitudinal study in which we investigated
the impact of extended category training of two artificial visual
categories in a parametric feature space on the visually evoked
responses using a rapid event-related magnetoencephalography
(MEG) adaptation paradigm. Adaptation paradigms, also known
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as repetition-suppression and repetition-enhancement (Krekelberg
et al., 2006; Segaert et al., 2013), are widely applied in the field
of functional magnetic resonance imaging (fMRI; see Grill-Spector
and Malach, 2001, for an adaptation review) and offer the advan-
tage to bypass the limited spatial resolution of any imaging method
by focusing on response-changes in neuronal subpopulations which
are measurable in the average response of a pre-defined region of
interest (ROI). Adaptation paradigms therefore have the potential
to reveal differences in neuronal selectivity that would remain un-
noticed in more traditional univariate designs. While the limits of
spatial resolution are even more drastic in case of MEG/EEG, these
methods offer the possibility to investigate cortical processes with
high temporal resolution. A combination of a rapid, event-related
MEG adaptation paradigm with perceptual category training is
therefore a promising candidate to resolve changes in the tem-
poral aspects of category processing, indicative of changes in the
underlying cortical mechanism. An additional advantage of our
longitudinal paradigm is a control for effects of low-level stimulus
properties. Data recorded during a baseline session allowed us to
exclude the possibility that potentially found category effects are
an inherent low-level property of the utilized feature space. Such
differences in low-level statistics have previously lead to consider-
able challenges in the interpretations of category effects in studies
using naturally occurring categories (Thierry et al., 2007; Rossion
and Jacques, 2008; Crouzet and Thorpe, 2011; VanRullen, 2011).
We investigated the emergence and development of category se-
lectivity by recording MEG data in a baseline session, prior to any
category training, a second time after five training sessions, and
a third time after extensive category training in 22 training ses-
sions. Category selectivity was estimated by comparing the visually
evoked responses to stimuli that were either preceded by a different
adaptor stimulus from the same category (category-internal), or
by an adaptor stimulus of a different category (category-external),
while holding low-level stimulus differences constant. To analyze

2.3 Introduction: Category Learning
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the high-dimensional MEG data, a novel spatiotemporal analysis
approach was employed. Building on the observation that true
adaptation effects should occur in the same cortical regions acti-
vated previously by the adaptor stimulus, the analysis exploits the
linear additivity of MEG sources in order to explicitly separate ex-
perimental effects, i.e. differences between category-internal and
-external conditions, into adaptation- and other, non adaptation-
related effects. In the adaptation phase of the experiment, each
trial consisted of two stimuli: an adaptor and a repetition stimulus.
Interpreting each MEG topography as a high-dimensional vector,
the cortical response to the second stimulus can be understood as
a linear combination of (a) a re-activation of the regions previously
responding to the adaptor stimulus, as required for adaptation, and
(b) other cortical regions, activated uniquely during the processing
of the second stimulus. This lead to the insight that the response to
the first, adaptor stimulus can be used to decompose experimental
effects, observed in the second response, into adaptation-based
and non-adaptation effects. Importantly, the involved vector pro-
jection maps the 271 dimensional sensor space onto a single, yet
highly informative subspace and thereby avoids problems of mul-
tiple comparison (see Methods and Materials for details). Using
this approach to focus on effects driven by adaptation we observed
a temporal shift in category selectivity from a latency of 275ms
after initial category acquisition to only 113ms following extensive
training. This speedup suggests a marked change in the cortical net-
work mediating the categorization of visual input. Indeed, source
analysis revealed an anterior-to-posterior shift of cortical activity
from initial to extensive category training. While the time-window
of category selectivity found after five training sessions exhibited
stronger activation in the prefrontal cortex (PFC), the early cat-
egory effects found after 22 training sessions showed increased
activation in occipitotemporal regions. Previous theories on visual
categorization viewed either PFC or regions in the ventral stream as
the origin of category selectivity. Our findings now reconcile these
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contrasting views by suggesting that both processes are likely to

contribute to categorization at different stages of category learning.

While PFC is involved in the categorization of rather novel and
dynamic categories, extensively used categories seem to obtain a
privileged status and are resolved faster relying more heavily on
cortical resources in occipitotemporal cortex.

2.3 Introduction: Category Learning
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2.4 Methods: The MEG adaptation
paradigm

2.4.1 Participants

Nine healthy, right-handed subjects (five female, aged 19-30)
participated in the study. All subjects had normal or corrected-to-
normal visual acuity, were naive to the purpose of the study and
gave written informed consent to participate. The experimental
procedures were approved by the ethics committees of the Univer-
sity of Osnabriick and the Arztekammer Hamburg. Each subject
participated in a total of 23 experimental sessions (one baseline
session and 22 training sessions). MEG data were recorded during
the first baseline session, as well as after training sessions five
and 22. The MEG recording from subject nine in session 22 was
excluded from the analyses due to excessive noise in the data.

2.4.2 Stimulus Space

Similar to previous work with macaques (Sigala, Gabbiani,
et al., 2002) and humans (Reed and MP Friedman, 1973; Nosofsky,
1991; Sigala, Gabbiani, et al., 2002; Kietzmann and Konig, 2010),
category training was based on two artificial categories of Brunswik
faces (Brunswik and Reiter, 1938), defined in a four-dimensional,
parameterized stimulus space (Figure 2.1), also known as a fac-
torial morphspace (Goldstone, Steyvers, et al., 1996; Gureckis
and Goldstone, 2008; JR Folstein, Palmeri, and Gauthier, 2012).
Two of the dimensions were category-relevant (eye height and
eye separation), while the two others (mouth height and nose
length) were assigned pseudo-randomly, ensuring that no stimulus
clusters of the same category existed that could potentially render
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Fig. 2.1 Stimulus Space. Subjects were trained to distinguish two artificial categories of

faces, defined in a four-dimensional parametric feature space. Two dimensions
were category-relevant (eye height and eye separation), and two were irrelevant
(nose length and mouth height). No single feature was decisive for the category of
a given face, only the combination of features allowed for correct categorization.
The category boundary was rotated by 90 degrees for every other subject.

these task-irrelevant dimensions informative. A linear category
boundary split the category space of the two relevant dimensions
in half, such that no single stimulus property was decisive for the
category membership. This design is optimized to search for ef-
fects of category selectivity, since no linear re-weighting of singular
input dimensions will lead to optimal training performance. The
overall stimulus space consisted of 60 stimuli, six of which de-
fined the respective category boundary and were not included in
the training and testing. The final two categories comprised 27
stimuli each. Moreover, the category boundary was rotated by
90° for every other subject. The subjects were at no point in time
instructed about the design of the stimulus space or the relevant
category dimensions. Post training, no participant was able to ver-
bally describe the relevant category rule. All stimuli shown during
training and the MEG adaptation sessions were presented using
the Psychophysics Toolbox 3 (Brainard, 1997; Kleiner et al., 2007)
running under Matlab 2010a.

2.4 Methods: The MEG adaptation paradigm
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2.4.3 Category Training

In order to allow subjects to learn the two artificial categories
of faces, they received category training in a total of 22 sessions
with 756 trials each. Here, we largely followed our previous proce-
dure (Kietzmann and Konig, 2010). In each training trial, subjects
were presented with a single stimulus and were then asked to cate-
gorize it as either category A or B with their index- or middle-finger.
Auditory feedback was provided as training signal. A high-pitch
tone indicated a correct response, whereas a low-pitch tone and a
forced break of two seconds indicated an incorrect response. To
prevent a fixed association between the category membership and
motor response, the finger used to indicate the category decision
was switched three times across each training session. The subjects
were notified of the switches.

2.4.4 Rapid Event-Related Adaptation
Paradigm

To estimate the time-course of electrophysiological category
effects, we used a rapid event-related MEG adaptation paradigm.
This approach is similar to the more common fMRI adaptation
(Grill-Spector and Malach, 2001) or repetiton suppression / en-
hancement, and has only recently been introduced to the field of
EEG and MEG (Marinkovic et al., 2003; A Harris and Nakayama,
2007; Caharel et al., 2009; Vizioli et al., 2010; Zimmer and Kov4cs,
2011; Huberle and Lutzenberger, 2013; Scholl et al., 2014). While
fMRI adaptation paradigms are traditionally associated with effects
of repetiton suppression, repetition enhancement is now commonly
observed across a wide variety of cortical regions (Krekelberg et al.,
2006; Segaert et al., 2013). Especially for experiments investigat-
ing adaptation effects across time, a temporal sequence of early
enhancement and late suppression has been reported (Marinkovic
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et al., 2003; Petit et al., 2006), in line with the prediction of
the more recent accumulation model of adaptation (James and
Gauthier, 2006). Taken together, the repeated activation of neu-
ronal populations can either lead to a suppressed or an enhanced
response amplitude in fMRI and MEG/EEG.

During the rapid MEG adaptation paradigm applied here, par-
ticipants performed a delayed match-to-category (DMC) task, in-
dicating whether two subsequently presented stimuli belonged to
the same or a different category (Figure 2.2a). To test for effects
of neuronal adaptation, i.e. repetition enhancement and repetition
suppression, we analyzed the magnetic fields evoked by the second
stimulus, when either preceded by a different adaptor stimulus
from the same category or an adaptor from a different category. In
total, 432 trials were recorded per session and subject, including
216 trials with a category-internal and 216 trials with a category-
external adaptor stimulus. The sequence of category-internal and
category-external conditions was randomized across trials. To
control for low-level feature differences in the two adaptation
conditions, all category-internal and category-external trials were
matched in distance and direction in the two relevant dimensions
of feature space (Figure 2.2ab). This has the additional advantage
that no linear re-weighting of the category-relevant dimensions
can account for category selectivity (Goldstone, Lippa, et al., 2001;
JR Folstein, Palmeri, and Gauthier, 2012), because all category in-
ternal and external adaptation trials will be affected likewise. Our
setup is therefore tuned for observing effects of category selectivity,
rather than attentional re-weighting of (single) features, required
for later category extraction. During the randomized adaptation
trials, a fixed mapping of experimental condition to motor response
was prevented by switching the target keys for the two answers
after half of the experiment. The structure of the adaptation trials
was as follows. First, a fixation cross was presented for 800ms with
an SOA of $100ms. Then, a first stimulus was presented for 500ms,
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Fig. 2.2 Adaptation Paradigm. To test for electrophysiological correlates of category
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information, an adaptation paradigm was used. Each trial either crossed the
category boundary (category-external) or stayed within a category (category-
internal). (a) Temporal sequence of an adaptation trial. (b) Low-level properties
of the category-internal and category-external adaptation trials were controlled by
matching the distance and slopes of the corresponding stimulus-pairs. Exemplary
trials are highlighted in color (category-external in red, category-internal in blue).

followed by an inter-stimulus-interval of 250ms. The second stimu-
lus was again shown for 500ms. Finally, after an additional delay
of 500ms a question mark was displayed on the screen, indicating
to the subject that a response can be given (Figure 2.2a). This
timed response was introduced to keep presentation of the second
stimulus free of cortical activity related to the motor-execution.

2.4.5 MEG Acquisition

MEG data were recorded in a baseline session, prior to cate-
gory training, as well as after five and 22 training sessions. The
selection of five and 22 training sessions was based on previous
work using a similar feature space, in which subjects were able
to perform at >90% accuracy after only five training sessions (Ki-
etzmann and Konig, 2010), while exhibiting high-level category
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effects only after prolonged training. MEG data were acquired at
1200Hz using a CTF whole-head system with 271 axial gradiome-
ters (CTF275, VSM MedTech). The position of the participants
head was continuously recorded using three head localization coils
(NAS/LPA/RPA). Moreover, a bipolar electrocardiogram (ECG) and
an electrooculogram (EOG) with three channels were recorded.
The EOG electrodes were placed below the eyes and on the fore-
head. The reference was positioned on the tip of the nose. The
experimental stimuli were back-projected on a screen with a LCD
projector (Sanyo XP51) at 60Hz refresh rate. The presentation
distance was 60cm, leading to a display size of 2°x3.3° of visual
angle.

2.4.6 Data Analyses

All analyses were performed using custom code in Matlab
R2010a (Mathworks, Natick, MA, USA), fieldtrip (Oostenveld et
al., 2011) and Brainstorm (Tadel et al., 2011).

2.4.7 Preprocessing

After downsampling the data to 600Hz, artifacts due to mus-
cle activity, sensor-jumps and extreme noise were first detected
automatically using fieldtrip, followed by manual cleaning of the
data. To account for sensor drifts, the data were high-pass filtered
at 1 Hz. Moreover, frequencies above 100Hz and the artifactual
frequency bands around 50Hz and 60Hz were excluded using a
zero-phase Butterworth IIR filter. To remove eye-related and car-
diac artifacts from the data, we used an automated procedure
based on an independent component analysis. The underlying
algorithm relies on a correlation-based and a weight-based artifact-
metric computed for each independent component. Components
surpassing a selected threshold were labeled as artifacts and re-
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moved from the data. The optimal thresholds were determined
automatically based on a receiver operator characteristic (ROC)
analysis applied to a subset of the data for which two experts had
classified components as artifacts. The resulting algorithm was
able to detect 98.1% of the components tagged by the experts, with
only 0.3% false positives (see supplementary material in Kietzmann
and Konig, 2015). Without making use of additional eye-tracking
data, our approach reaches performance levels of a state of the art
algorithm for automatic artifact removal that require ground-truth
eye-movement data (Plochl et al., 2012). Finally, although our fully
randomized design prevents systematic effects of head-position,
we removed any residual effects form our data. We first extracted a
six dimensional description of the head position and direction from
the simultaneously recorded localization coils (NAS/LPA/RPA) and
used this to regress out the effects of head-position (Stolk et al.,
2013). All evoked potentials were baseline-corrected with respect
to the 700ms fixation period prior to the presentation of the first
stimulus.

2.4.8 Spatiotemporal Projection Approach:
Separating effect sources

The current experiment makes use of a rapid event-related
MEG adaptation paradigm. In each trial, two stimuli are presented:
one adaptor and subsequently a second, repetition stimulus. Two
experimental conditions are compared. The second stimulus can
either be of the same category as the adaptor, or of a different
category. Differences between these two conditions thus indicate
category selectivity. Common to every adaptation paradigm, ex-
perimental effects can either originate from true adaptation, i.e.
the differential re-activation of category selective regions (Fig-
ure 2.3a), or from other sources that are uniquely activated during
the presentation of the second stimulus. As an example of the
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Fig. 2.3

The repetition of the adaptor The response to the repetition In the current setup, the second, Effects not due to adaptation are

stimulus  exhibits ~ adaptation  stimulus can be decomposed into ()  repetition stimulus can be category-  observed in  the  subspace,
effects in the second response. a re-activation of sources previously or -external. The category  orthogonal to the adaptor stimulus.
Adaptation  can lead to activated by the adaptor, and (b) adaptation effect is the difference of It contains all that
suppression, as shown here, or I sources, uniquely active during  the external adaptation and the  cannot be explained by the projec-
enhancement. the processing of tthe second internal adaptation effects. tion onto the adaptor.
stimulus.
e Data Data-Projection Subspace Activity Paired t-Statistics
(Repetition) (Adaptor) (Adaptation Effect) (Category Adaptation Effect)

(External)

Condition A

Condition B

Spatiotemporal Projection Approach - Separating effect sources. A spatiotemporal
projection approach was used to decompose the MEG response to the second
stimulus, and thereby category effects, into parts due to a re-activation of the
regions previously responding to the adaptor stimulus and activity in other cortical
regions. (a) At any given point in time, the MEG activity pattern can be interpreted
as a vector in high-dimensional space (for clarity, we here show a 2-dimensional
example, without loss of generality). Adaptation effects are typically expected to
lead to an altered amplitude in the second, repetition response, compared to the
first, adaptor response. (b) The response to the second stimulus, however, is a
linear combination of a repeated activation of the previously activated sources
(as required by the adaptation paradigm), and other sources (e.g. response
preparation, etc.). (c) Experimental effects can be decomposed in a similar
fashion. To detect effects based on adaptation, the experimental conditions are
projected onto the adaptor vector. (d) Non-adaptation based effects are found in
the residual activity of both conditions, which reside in an subspace orthogonal to
. If no sensible projection target can be defined a priori, a test can be performed
for each sensor and time point, adjusting accordingly for multiple comparisons.
(e) Adaptation-based effects are investigated across time, based on the projection-
approach yielding activity traces for each subject, condition and session. These
traces are subject to statistical analyses, highlighting temporal candidate clusters
that show significant differences between category-internal and category-external
trials. These candidates are then subject to subsequent analyses. Abbreviations:
n, trial number; s, sensor number; t, time point.
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latter, if category-internal and category-external conditions were
reported unbalanced, via different hands, condition-dependent
differences in the activations of the two motor-cortices would be
expected. Such effects, despite originating from category-related
signals, would not be due to adaptation (please note that this
example is for illustration purposes only, as the current design bal-
anced different motor responses across experimental conditions).
In order to separate these different adaptation and non-adaptation
effect sources, we here employ a spatiotemporal analysis approach
that decomposes the MEG signals of the second stimulus into parts
that are due to the re-activation of regions previously involved in
processing the adaptor, and parts that cannot be accounted for by
re-activation (Figure 2.3b). Effects due to adaptation. To focus
on adaptation effects at a given point in time, we project the high-
dimensional MEG response vector of the second stimulus () onto
the normalized adaptor response vector (a):

7= (F-a)a
The adaptation-based category effect (ace) is then computed as the
difference in amplitude between projected category external (€)
and internal (i) response vectors (Figure 2.3c), yielding a scalar
estimate of the adaptation-based category effect:

=€-a—1i-a

ace = |eg
Applied for every point in time, this projection yields one-dimensional
effect traces for every participant and session, which are subse-
quently subject to statistical analyses (Figure 2.3e).

To define the projection vector, @, we here chose to use the
group average response, evoked by the first, adaptor stimulus, as
recorded in the baseline session (time window between 0 and 300
ms after stimulus onset, low-pass filtered at 35 Hz using a zero-
phase Butterworth IIR filter, Figure 2.4). Using the same projection
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Fig. 2.4 Grand average responses to adaptor and repetition stimulus. (a) Butterfly plot of

the first, adaptor stimulus. (b) Grand average response topographies of the first,
adaptor stimulus during the baseline session (as later used for data projection),
and for the second, repetition stim-ulus, shown separately for each session.

vector as basis for effect estimation has the advantage that it allows
for comparisons of effect sizes across experimental sessions. If
different projection vectors were used for every session, it would
introduce unnecessary ambiguity as possible changes in effect-
sizes might be merely due to changes in the underlying projection
vector. To ensure that the current approach is appropriate, we
performed a non-parametric cluster test based on an F-statistic
in which we compared the responses to the first stimulus across
all three sessions (baseline, session five, session 22) within the
first 300ms of processing (the cluster-threshold was set to p<0.05,
cluster inclusion was at alpha<0.05). No significant differences
were found, indicating that the same projection vector can be used
across sessions. Finally, to be able to compare effects across time,
the projection vector (@) was normalized to unit length (& ) at each
sample.
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Non-adaptation effects. While the projection approach is
straight-forwardly applicable to adaptation effects, as the adaptor
stimulus uniquely defines the projection target, non-adaptation
based effects can occur independently, rendering a projection ap-
proach inapplicable: given adaptation-based effects have been
accounted for via projection, such residual effects can occur any-
where in the space, orthogonal to the adaptation vector. Thus,
to test for such residual, non-adaptation effects, we statistically
compared the previously unexplained parts of the external (€) and
internal (i) vectors (shown as a projection onto the orthogonal
plane in Figure 2.3d), which reside in the original 271-dimensional
sensor space.

In summary, we use the response to the first, adaptor stimulus
to decompose the response to the second, category-external or
category-internal, stimulus into two possible sources: adaptation-
based effects, and other, non-adaptation effect sources. In contrast
to this, more traditional analyses of adaptation paradigms leave
the origin of observed effects ambiguous, and thereby severely
complicate their interpretation. In addition to this important ad-
vantage, the current projection method has further statistical bene-
fits because adaptation-based effects can be investigated using a
one-dimensional projection-signal, created from the original 271
dimensional data. This circumvents the problems of multiple com-
parisons occurring when all sensors are considered individually.
Traditionally, this problem is solved by either selecting sensors of
interest a priori (Rossion and Jacques, 2008), or alternatively by
testing all sensors individually and afterwards controlling for mul-
tiple comparisons, for instance by applying non-parametric cluster-
based correction methods (Maris and Oostenveld, 2007; Ehinger,
Konig, et al., 2015). Unfortunately, both options are not without
problems. An a priori, fixed selection of sensors is problematic, if
it is unclear which sensors should be selected or, even more so, if
sensors of interest change over time. The second solution, testing
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all sensors and time-points individually while applying a cluster-
based correction, provides the liberty of observing effect clusters
anywhere in space and time, but at the cost of much decreased
statistical sensitivity. These limitations are overcome by the current
projection method. Another statistical consideration worth noting
is that the data used for the projection vector are independent of
the experimental data in question (comparing category-internal
and category-external responses in the second stimulus). This
avoids the (spatial) dangers of double-dipping in neuroimaging
(Kriegeskorte, Simmons, PSF Bellgowan, et al., 2009). Notably, the
current projection method is directly applicable to fMRI adaptation
paradigms. In fMRI, the traditional use of ROIs, too, exhibits the
problem that observed effects are intermixed and therefore cannot
be unambiguously attributed to mechanisms of adaptation. That
is, effects observed can either originate from adaptation, or other
effect sources. A further benefit of our approach, exploited later
in this paper, is that the effect decomposition allows for efficient
source localization of MEG data. Effects due to adaptation can be
interpreted as a differential activation of the regions contributing to
the first, adaptor stimulus. Therefore, to source localize the effect,
the data from the adaptor stimulus can be used. Put differently, the
adaptor functions as a spatiotemporal localizer that explicitly fo-
cuses the analysis on stimulus-repetition effects. Thus, if an effect is
found via projection, the same localizer determines the underlying
sources. This approach resembles the standard methodology used
for analyses based on independent components, for which effects
are first investigated based on component activations and localized
based on the component topography (Makeig et al., 2002; Pockett
et al., 2007; Ehinger, Fischer, et al., 2014; Tsai et al., 2014). The
assumption of our, and in fact any localizer approach, is that the
same cortical processes are active during the trials used to define
the localizer and the experimental trials of interest. While many
experimental settings meet this assumption, adaptation paradigms
are particularly suited for this approach. This is due to the fact
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that they already presuppose the same cortical regions to be active
during the processing of the first and second stimulus. The use of
the first-stimulus response as a spatiotemporal filter for the evoked
response to the second is therefore simply a consequent transla-
tion of the experimental paradigm to the analysis methodology.
It should be noted that the projection approach, described so far,
relies on the assumption that similar cortical regions are active at
comparable latencies, because and are taken from the same point
in time. If responses exhibit significant temporal shifts effects can
potentially be missed. To partially counter this effect, we here
low-pass filtered the adaptor stimulus, resulting in a temporally
more robust fit. As a theoretical alternative, one could use the
full response matrices (sensor x time) of adaptor and repetition to
explicitly test for effects at all possible delays. Instead of an effect
trace, this yields an effect matrix (M):

M=R-A

The diagonal of this matrix corresponds to a zero-delay and there-
fore to the effect traces used here. While able to detect effects at
different latencies, this approach introduces a quadratic increase
in the number of tests. The required corrections for multiple com-
parisons thereby decrease overall sensitivity.

2.4.9 Statistical Analyses

For statistical analyses of the adaptation effects, yielded through
our spatiotemporal projection method, we computed the one-
dimensional response traces for every participant, condition, and
session (Figure 2.3e). Based on these signals, we then tested
for training-induced category effects, following a two-staged ap-
proach. First, we temporally localize time-windows of interest,
i.e. time-windows exhibiting significant category effects (p<0.05)
by performing a paired t-test at every point in time, contrasting
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category-external and category-internal trials. Following this, we
investigated, whether the observed category selectivity was indeed
the result of category training. To accomplish this, we tested, for
each candidate time-window, whether the respective effect is signif-
icantly larger after training compared to the difference observed in
the baseline session (training interaction). This was accomplished
by estimating the corresponding interaction effect size and its 95%
confidence intervals. Corrections for multiple comparisons across
time were performed at this final stage by applying a Bonferroni
correction at the cluster-level, i.e. by enlarging the 95% intervals
according to the number of clusters tested in each session. As
a result of this statistical procedure, any cluster reported in the
following will not only have shown significant category effects, but
also a significant training interaction, verifying that the found ef-
fects are indeed caused by category training. Testing for a training
interaction is an important additional prerequisite in investigations
of developing category selectivity, as observed differences between
category-internal and category-external conditions could also be an
inherent property of the selected feature space and not the result
of category training. This possibility is ruled out by the statistical
procedure described. Summing up, we focused on adaptation-
based effects by combining a spatiotemporal projection method
with rigorous statistical analyses. This allowed us to overcome the
need to use heuristics in selecting sensors and time-windows of
interest, while controlling for multiple comparisons in space and
time. The only free parameter of the overall approach for finding
adaptation-based effects is the p-value for the selection of temporal
candidate windows, which was selected to be p<0.05. To test for
non-adaptation effects, we performed a two-sided t-test for every
point in time and space, and corrected the family wise error rate
using a nonparametric, cluster-based permutation test (cluster in-
clusion threshold alpha<0.05, left-and right-sided cluster p<0.025,
respectively). This approach can find unpredicted effects, but at
the cost of decreased statistical sensitivity. All analyses performed,
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adaptation and non-adaptation, focus on the first 300ms of pro-
cessing after stimulus onset, as this time-window approximately
resembles typical fixation durations during free-viewing of natural
scenes (Underwood et al., 1998).

2.4.10 Behavioral Relevance

To estimate the behavioral relevance of the observed cate-
gory effects, we contrasted the effect size of adaptation trials in
which the response of the subject was correct and trials in which
an incorrect response was given. The reasoning of this approach
was that if the found effects are behaviorally relevant, larger ef-
fects should be expected upon correct performance in the delayed
match-to-category task. Similar to the statistical analyses of the
training-interactions, we focused on clusters that exhibited signifi-
cant category effects and training interactions, estimated the effect
size and bootstrapped the respective upper- and lower bounds of
the 95% confidence intervals (with replacement) while applying a
Bonferroni correction for multiple comparisons at the cluster level.
Matching the behavioral accuracy in the DMC task, on average 136
incorrect trials were compared to 277 correct trials in session five,
whereas 94 incorrect trials were compared to 277 correct ones in
session 22.

2.4.11 Source Analysis

To compare source activity on the cortical surface, we used
the SLORETA algorithm (Pascual-Marqui, 2002), as implemented
in the Brainstorm software (Tadel et al., 2011), on the adaptor
stimulus data, which was used as projection target, to localize
the adaptation-specific category effects. For every subject, we
first segmented the individual MRI into white and gray matter
using Freesurfer (Dale, BR Fischl, et al., 1999; B Fischl et al.,
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1999). We then performed the source reconstruction based on
each individual anatomy and aligned the results to MNI space
(Colin27) using spherical averaging of the cortical surfaces. For
statistical analyses, we contrasted the average source activity (L2-
Norm) during the earliest time-window of category selectivity in
session five (275-293ms) and session 22 (113-140ms) at every
surface vertex and applied a clusterwise correction for multiple
comparisons based on a nonparametric permutation test (Maris and
Oostenveld, 2007). Only vertices showing p<0.05 were included
in the cluster estimates.
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2.5 Results: Category selectivity at
116ms after extensive category
learning

2.5.1 Behavioral Data on Category Training

Subjects were trained to categorize two artificial categories of
faces defined in a parametric feature space (Figure 2.1). Training
lasted for a total of 22 sessions consisting of 756 training trials
each. In each trial, participants were required to make a category
judgment for a given stimulus and received auditory feedback
as training signal. Classification accuracy reached 89.4% after
five training sessions, and 95.3% after training was completed in
session 22 (Figure 2.5). At the same time, reaction times continued
to decrease with training (from 679ms in session five to 538ms in
session 22, p<0.01 paired t-test). Thus, although high classification
performance was reached already after five training sessions, the
behavioral data indicate continued improvements over the whole

training period.

2.5.2 Behavior during the Delayed
Match-To-Category Task

The electrophysiological correlates of category effects were
estimated using an adaptation paradigm in which subjects per-
formed a delayed match-to-category task (Figure 2.2a). During the
baseline session, and therefore prior to category training, the DMC
performance of our subjects did not differ significantly from chance
(49% accuracy, p=0.128, t-test against a chance-level of 50%).
This demonstrates that our artificial category structure is not an
inherent property of the stimulus space. With training, DMC per-
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Fig. 2.5 Effects of Training on Performance and Reaction Times. Subjects received auditory
feedback as a training signal, but no explicit information about the underlying
feature space or category structure. Recognition performance and reaction times
improved until session 22, illustrating continued training effects. Error bars
depict SEM.

formance increased to 66.2% in session five and 76.0% in session
22 (see supplementary material in Kietzmann and Konig, 2015). A
repeated measures ANOVA (with session (baseline, five, 22) and
category membership (internal, external) as factors) revealed a
significant main effect of session (p<0.01, all pairwise comparisons
are significant at p<0.01, t-test, Bonferroni corrected), but no main
effect of category membership (p>0.05) and no significant inter-
action (p>0.05). Thus, although there was an overall increase in
task performance with training, there was no significant difference
in the performance of the category-internal and category-external
trials indicating that the task was equally demanding in trials of
both conditions. Effects of condition difficulty can therefore not
explain the categorical effects observed. The accuracy in the DMC
task was lower than expected from the high training performance
(95% training accuracy predicts around 90% accuracy for two
consecutive decisions). This is in line with observations by Helie
and Ashby (2012), who observed sub-optimal DMC performance
even for comparably simple one-dimensional category boundaries.
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Multiple reasons can account for this difference. First, a success-
ful DMC trial requires, in addition to the correct classification of
both stimuli, successful working memory encoding and retrieval,
a successful category comparison, and a successful match to the
correct motor response. Moreover, the electromagnetic shielding
required for the MEG measurements required the use of a back-
projected display with decreased contrast compared to the training
monitor. Most importantly, our participants had considerably less
experience with the structure of the DMC task, compared to the
excessive amount of trials in the training paradigm.

2.5.3 Training-Induced Category Effects in
Visual Responses (MEG data)

To test for category effects in the visually evoked responses,
we compared the magnetic fields evoked by the second stimulus in
the category-internal and category-external adaptation trials in the
MEG adaptation paradigm, while controlling the low-level stimulus
properties of the two conditions (Figure 2.2b). This indirectly tests
for category selectivity, as differences between these two conditions
will only be detectable if category-information is encoded in the un-
derlying cortical activity. Importantly, adaptation paradigms were
previously shown to result in both, effects of repetiton suppression
as well as repetition enhancement (Krekelberg et al., 2006; Segaert
et al., 2013), depending on stimulus timing (James and Gauthier,
2006), effect latency (Marinkovic et al., 2003; Petit et al., 2006),
and region of interest (Zago et al., 2005). For analyses of visually
evoked responses, we employed a spatiotemporal projection ap-
proach that allowed us to focus our analyses on adaptation-based
effects, and an unconstrained cluster-based analysis for effects that
are not due to adaptation.
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Focusing on adaptation-based effects first, we projected the
evoked fields in response to the second stimulus onto the adaptor
response, and thereby created activity traces for each session, sub-
ject and condition (category-external and category-internal). We
then performed a paired t-test at every time-point to test for differ-
ences between category-external and category-internal conditions
(positive t-values indicate a larger response for category-external
trials). This provided us with temporal candidate clusters that
exhibit significant category effects for every session. To ensure that
the observed category effects were indeed the result of category
training, it had to be shown that category effects were significantly
larger post-training as compared to the baseline session. As a fi-
nal step, we therefore estimated the effect sizes and confidence
intervals of the training interaction for each temporal candidate
cluster (Bonferroni corrected at the cluster level, thereby control-
ling for multiple comparisons). Only temporal clusters surviving
this rigorous control will be reported in the following. The clusters
reported will not only exhibit significant category effects, but also
show significantly stronger category effects compared to baseline,
indicating that the seen category effects are the result of category
training.

We first analyzed the data from the baseline session. Here,
we found no significant category effects (Figure 2.6a), confirming
that the category structures used for training were not an inherent
property of the used stimulus space. We then analyzed the data
of the two post-training sessions five and 22, testing for category
effects and training interactions. After five training sessions, the
earliest significant, training-induced category effects were evident
between 275-293ms (Figure 2.6b). With developing category ex-
pertise, however, a temporal shift in category effects was observed.
After 22 training sessions, the earliest cluster exhibiting signifi-
cant training effects occurred already after 113ms (lasting from
113 to 140ms). Additional time-windows of significant category
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represent the adaptation-based t-statistics across time, as obtained from the
spatiotemporal projection method, comparing category-internal and category-
external trials. Candidate temporal windows during which visually evoked
responses showed significant category effects and a significant training interaction
are shaded in dark colors. Candidate windows exhibiting no significant training
effects are marked in light grey. Together with traces of t-statistics, each panel
shows the underlying effect topographies and training interactions (i.e. effect
difference between baseline and post-training) where applicable. (a) During
the baseline session, no significant category effects could be found. (b) After
five training sessions, the first significant training-induced window of category
selectivity is present from 275-293ms. (c) After extended category training in
22 sessions, the earliest training-induced category effects are present from 113-
140ms. Additional clusters of significant training-induced category effects were
found between 171-175ms and 220-233ms.
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effects were found between 171-175ms and between 220-233ms
(Figure 2.6¢). The corresponding template and effect topographies
are shown in Figure 2.4 and Figure 2.6, respectively. Importantly,
the earliest cluster found in session 22 (113 to 140ms) is not only
significantly different to the baseline session, indicating an overall
training effect, but also significantly larger compared to session
five (CI95 = [-8.47%10-15,-1.55%10-13]). The latter indicates that
the extensive training between sessions five and 22 lead to the
temporal shift in category effects. The observed speed-up of more
than 160ms from session five to 22 is remarkable, as our sub-
jects already categorized the stimuli at about 90% accuracy during
training session five. Moreover, it is comparable to the observed
decrease in reaction times of around 140ms from training session
five to 22. As a necessary result of the close control of low-level
feature differences (same stimulus-space distance and direction
for category-external and category-internal trials), stimuli close to
the category boundary were shown more frequently in the DMC
task. Based on this, it could be argued that effects of long-term
adaptation might specifically affect category external trials, thereby
contributing to the early category-effects observed in session 22.
Speaking against this possibility we found no significant differ-
ences during the baseline session. Furthermore, we report only
clusters exhibiting both, significant category effects and training
interactions to ensure that the effects reported are indeed the re-
sult of category training. Following adaptation-based effects, we
tested whether category-specific effects exist that are not due to
adaptation (Figure 2.6). Based on the residual data, i.e. the parts
of the evoked fields that cannot be explained based on the adaptor
response, we compared category-internal and category-external
conditions, while correcting for multiple comparisons using a non-
parametric cluster-based permutation test. This analysis revealed
no significant effects of category selectivity (all cluster p>0.3).
This highlights the successful balance of motor-response mapping
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across conditions and indicates that, in the current setup, category-
selectivity was only observed adaptation-based.

2.5.4 Relation of Physiological Category Effects
to Behavior

To test whether the observed adaptation-based category effects
were behaviorally relevant, we compared the category effect sizes
for successful and erroneous trials during the delayed match-to-
category task. Again, we estimated the effect sizes and confidence
intervals, while Bonferroni correcting for multiple comparisons at
the cluster level. This analysis revealed significant differences for
the earliest cluster in session 22, indicating the behavioral rele-
vance of the effect. No other cluster in session 22 and five exhibited
significant behavioral effects. Considering the absence of signifi-
cant differences for session five, it should be noted that behavioral
errors in the delayed match-to-category task can have various ori-
gins. Apart from the variability in the category signal, which is of
interest here, they include subjects inattentiveness, errors in work-
ing memory and an incorrect mapping of the perceptual decision to
the appropriate behavioral response. These additional sources of
error significantly complicate the search for behavioral relevance,
as they all do not predict differences in category-selectitivy. More-
over, it is possible that effects of behavioral relevance occurred at
an even later point, extending beyond the 300ms analyzed here.

2.5.5 Source Analyses

Following the analyses in sensor space, we tested whether
the temporal shift in category selectivity observed between session
five (275-293ms) and session 22 (113-140ms) is due to altered
neuronal processing in the same cortical areas, or whether different
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Fig. 2.7 Source Localization Results. Source activations of the earliest clusters of category
selectivity in sessions five and 22 were contrasted. Shown are uncorrected t-
values with a cutoff at p<0.05. Blue regions show larger activity during the
category-selective time-window in session five, red regions show larger activity in
the early category-cluster in session 22. A white border highlights clusters after
controlling for multiple comparisons (cluster-based permutation test).

sets cortical areas are activated during these two time windows
of interest. To this end, we computed a standardized low resolu-
tion brain electromagnetic tomography (SLORETA, Pascual-Marqui,
2002) on the data of the adaptor stimulus, which underlies the
observed category effects (see Materials and Methods for details).
We estimated the average source activations during the two time-
windows of interest and tested for significant differences based
on a t-statistic, while controlling for multiple comparisons using
a nonparametric cluster-based permutation test (Maris and Oost-
enveld, 2007) on the cortical surface. This analysis revealed that
the previously shown temporal shift in category selectivity was
accompanied by an anterior-to-posterior shift of cortical activa-
tion (Figure 2.7, positive t-values indicate a stronger activation
in the early time-window observed in session 22). Although the
source distributions exhibited considerable overlap, among others
in parietal regions, the time-window of training-induced category
effects in session five showed a significantly stronger activation in
the ventrolateral and ventromedial parts of the PFC. In contrast,
the cortical activation during the earlier time-window of category
selectivity in session 22 exhibited significantly stronger activity
in more posterior regions, including the occipitotemporal cortex.
All results were reproduced in a separate source localization anal-
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ysis based on dynamical statistical parametric mapping, dSPM
(Dale, AK Liu, et al., 2000) instead of sLORETA. As stated above,
the source analysis approach taken here specifically focuses on
time-points at which adaptation-effects were observed. Using the
adaptor response as basis, it highlights sources that are differen-
tially activated at the two earliest significant timepoints in sessions
5 and 22. This assumes that the respective effects observed are
the result of altered activity in the strongest sources. This is not
necessarily true, as the projection approach can yield significant
results that are driven by weaker sources and sensor-patterns. In
the current case, however, this concern is not warranted, as the
effect topographies nicely match the topographies of the adaptor
stimulus. Moreover, the fact that no category-effects were observed
in the residual activity indicates that the localized sources are the
sole contributor to category selectivity in the current data.
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2.6 Discussion

Previous work on naturally occurring categories has demon-
strated that category information can be rapidly extracted from
visually presented objects. It remained unclear, however, how the
visual system copes with the challenge to reach such rapid recogni-
tion speeds while at the same time allowing for sufficient plasticity
to encompass the fast learning of entirely new categories. Are the
same neuronal mechanisms and structures involved in recognizing
re-occurring and newly learned categories, or are they different?
And, if they are different, are novel categories implemented differ-
ently with prolonged experience? Here we investigated these issues
by extensively training nine subjects to categorize two artificial vi-
sual categories. During training, we recorded MEG data in a rapid
event-related adaptation paradigm to investigate the emergence
of category selectivity in visually evoked responses. Additionally,
MEG data were recorded prior to category training to serve as a
baseline. Using a novel data projection approach, which allowed
us to separate adaptation-based and non-adaptation effects, we
demonstrate the emergence and, following this, a temporal shift in
category selectivity. The data recorded in the baseline session did
not exhibit any category effects, indicating successful control for
low-level stimulus properties. After five training sessions, the ear-
liest training-induced category effects were found around 280ms
of processing. With extensive training in 22 sessions, we observed
a temporal shift in category selectivity. The first significant dif-
ferences were now found about 160ms earlier, between 113 and
140ms. We then investigated whether the temporal shift in cate-
gory selectivity was accompanied by changes in the spatial pattern
of the underlying cortical activity. We compared the source acti-
vations during the two earliest temporal clusters of sessions five
and 22 and found a significant anterior-to-posterior shift. While
the cortical activity during the late category effects in session five
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showed stronger signals in PFC, the early time-window of category
selectivity in session 22 exhibited an increased activation in occipi-
totemporal regions. An interesting aspect of the results is that tem-
porally late effects in session five and 22 exhibit positive t-values,
suggesting a decreased response for category-internal compared to
category-external trials and therefore repetition suppression. The
earliest effect observed, cluster one in session 22, however, ex-
hibits a reverse effect, indicating effects of repetition enhancement.
This finding is in line with previous EEG adaptation experiments
that demonstrated early enhancement, but late suppression effects
(Marinkovic et al., 2003; Petit et al., 2006), and contributes to an
ongoing debate about the mechanisms underlying differential rep-
etition effects in electrophysiology and neuroimaging (James and
Gauthier, 2006; Krekelberg et al., 2006; Segaert et al., 2013). Our
finding of an early cluster of category selectivity, starting at 113ms
and lasting until 140ms, is fully compatible with previous studies of
natural categories in macaque and human. In the macaque, Sugase
et al. (Sugase et al., 1999) recorded from inferotemporal cortex
(IT) and observed a peak in category information after only 117ms
of processing. In line with this, Hung et al. (Hung et al., 2005)
demonstrated that relatively small numbers of randomly selected
neurons in IT allow for reliable category decoding, peaking 125ms
after stimulus onset. Interestingly, the authors also show decoding
of low-level properties such as size and position of an object, argu-
ing for residual retinotopic information in the neuronal response.
This emphasizes the necessity to control for low-level stimulus
properties and underlines the benefits of baseline measurements in
category training. Finally, Freedman et al. (2003) applied a receiver
operator characteristic approach to recordings from macaque IT
and PFC. They showed that IT cells exhibited category selectivity
after 127ms. In humans, electrocorticographic recordings provided
direct evidence that natural categories can successfully be decoded
at a mean latency of 115ms (H Liu et al., 2009). Remarkably,
decoding was possible based on single trials, allowing for gener-
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alization across rotation and changes in scale. In line with this,
MEG recordings of human subjects provided evidence that visually
evoked responses of houses and faces can be separated already at
the time of the M100 component (J Liu et al., 2002). In the same
study, a positive correlation of response amplitude and categoriza-
tion performance was shown, indicating the behavioral relevance
of the early category signals. Using a multivariate decoding ap-
proach, Carlson et al. (Carlson, Hogendoorn, et al., 2011) showed
that it is possible to differentiate two visual categories (faces and
cars) after 135ms of processing, even if the retinal locations of
trained and tested stimuli were different. Similar results were later
obtained using a wider range of categories (Carlson, Tovar, et al.,
2013). Extending this approach, Cichy et al. (Cichy et al., 2014)
performed a temporally fine-grained representational similarity
analysis based on 92 object images and demonstrated successful
decoding of different types of category selectivity at approximately
the same latency. The authors furthermore showed a correlation
between the brain responses in macaque and human, providing
further evidence for a common representational space (Kriegesko-
rte, Mur, et al., 2008). These results of early category selectivity
were extended to a more natural, cluttered stimulus set contrasting
faces to other stimulus categories (Cauchoix et al., 2014). Finally,
electrooculography (EOG) data provided by Kirchner and Thorpe
(Kirchner and Thorpe, 2006) suggest that category information is
present and behaviorally relevant after only 120ms of processing.
However, it should be noted that all of the studies mentioned above
either investigated neuronal responses to naturally occurring cate-
gories or did not include a pre-training baseline. Apart from the
inherent challenges to differentiate category selectivity from sys-
tematic differences in the low-level statistics (Thierry et al., 2007;
Wichmann et al., 2010; Crouzet and Thorpe, 2011; Rossion and
Caharel, 2011; VanRullen, 2011), these setups do not allow for an
investigation of emerging category selectivity with increasing cate-
gory experience, which is the focus of the current study. Overall,
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the neuronal mechanisms underlying the categorization of visual
input have been in the focus of a lively debate over the recent
years. A prominent view centers around the idea that category
information is extracted by PFC (Serre et al., 2007; Cromer et al.,
2010; Roy et al., 2010; Antzoulatos and Miller, 2011). Accordingly,
neuronal selectivity in temporal regions is seen as merely providing
a sufficiently complex vocabulary from which the category infor-
mation can be flexibly read out. This view is consistent with the
predictions of the two-stage model of perceptual category learning
(Riesenhuber and Poggio, 2002), which hypothesized that neurons
in IT obtain sharper tuning to re-occurring stimulus features, while
regions in frontal cortex learn to associate these features with the
corresponding category membership. In humans, experimental
evidence supporting such division of labor was provided by Jiang
et al. (2007). They showed that category training can lead to
an increased shape selectivity in ventral areas whereas category
selectivity was found only in the lateral PFC (but see Minamimoto
et al., 2010). Moreover, there is evidence for enhanced shape
selectivity in ventral areas in human and macaque (Sigala and
Logothetis, 2002b; Freedman et al., 2006; Linden, Turennout, et
al., 2010; Linden, Wegman, et al., 2013). Nevertheless, the large
body of evidence for rapid category selectivity in IT, as reviewed
above, supports a contrasting view according to which category
information might already be extracted at the level of the temporal
lobe (DiCarlo et al., 2012; Mur et al., 2012; N Liu et al., 2013).
Closely mirroring this controversy, different labs have studied the
cortical representations of spatial and motion-related categories in
the parietal and prefrontal cortex, arriving at opposite conclusions.
Whereas some observed stronger and earlier category signals in
prefrontal compared to parietal cortex (Goodwin and Blackman,
2012; Crowe et al., 2013), others reported the reverse: earlier
category-selective signals in parietal cortex preceding prefrontal
category selectivity (Fitzgerald et al., 2012; Swaminathan and
Freedman, 2012). Providing a potentially unifying solution to
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these controversies, we have demonstrated here that prolonged
category training can lead to a temporal shift in category selectivity,
which is accompanied by an anterior-to-posterior shift in cortical
activity. These data provide a cue as to how the brain could balance
the need for robust and fast recognition of re-occurring categories
while still allowing for considerable flexibility and rapid plasticity.
Selectivity for novel categories relies more heavily on PFC and, as
indicated by the long latency of the observed effect, potentially
recurrent processing. Sufficient expertise with the categories, how-
ever, leads to changes in the cortical implementation of the trained
categories, thereby allowing for a substantial speedup in process-
ing times and emphasizing cortical processes in occipitotemporal
regions. A comparable view was recently described by Seger and
Miller (2010) who proposed that the brain might simultaneously
implement fast and slow learning processes. Fast learning pro-
vides multiple advantages, such as increased flexibility and rapid
adjustments, but at the cost of an increased risk of erroneous clas-
sification. Slow learning, on the other hand, is less error-prone
but at the cost of extended training requirements. In line with this
suggestion, Helie, Roeder, et al. (2010) trained participants in a
rule-based categorization task and demonstrated an initial transi-
tion from subcortical to cortical areas, including PFC, and a second
transition towards the premotor cortex with emerging automaticity.
The current setup, using MEG, is not particularly suited to resolve
subcortical activity. However, it is possible that a similar transition
from subcortical to cortical areas also occurred in our participants
during initial category training, potentially even earlier than our
first post-training MEG recording. The question of the respective
contribution of subcortical and cortical regions in category learning
was recently addressed in the macaque (Muhammad et al., 2006;
Antzoulatos and Miller, 2011; Antzoulatos and Miller, 2014), sug-
gesting that the striatum is indeed involved during initial category
learning, potentially entraining prefrontal circuitry. In line with
this suggested learning transition, our results provide a potential
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explanation as to why some previous studies did not see (early)
category selectivity in temporal areas after category training (Jiang
et al., 2007; S Li et al., 2007; Gillebert et al., 2009; Scholl et al.,
2014). Apart from many differences between these experiments
and our study, our data suggest that the extent of training is a
decisive factor. Comparably short training times might only reveal
rather late category selectivity in frontal regions, as observed in
session five here, whereas prolonged training is required for early
occipitotemporal effects. Another important difference is given
by the type of category space used during training. Using psy-
chophysical measurements Folstein et al. (JR Folstein, Palmeri,
and Gauthier, 2012) demonstrated that factorial, but not blended
morphspaces, lead to an enhanced discrimnability of category-
relevant feature dimensions, implying that studies using the latter
(Jiang et al., 2007; Gillebert et al., 2009; Linden, Turennout, et al.,
2010; Scholl et al., 2014), were less likely to observe category-
selectivity in visual areas. This suggestion was corroborated by a
follow-up fMRI study in which the authors demonstrated robust
category signals in visual areas (J Folstein et al., 2012; JR Folstein,
Palmeri, Van Gulick, et al., 2015). In line with such evidence
for category-selectivity in visual areas, effects of expertise have
been demonstrated in the FFA (Gauthier, Skudlarski, Gore, and
aW Anderson, 2000), and the N170 ERP component (Tanaka and
Curran, 2001). By contrasting correct and incorrect responses, we
demonstrated significant behavioral relevance of the early category
effects starting at 113ms in session 22. It has to be noted, however,
that the time-points of category selectivity observed in sessions
five and 22 do not necessarily mark the end point of the percep-
tual decision process. Successful performance in the DMC task
requires the successful completion of additional processing steps,
such as the successful comparison of the two shown categories and
the mapping of the perceptual decision to the appropriate motor
response. Moreover, effects of perceptual certainty (Philiastides
and Sajda, 2006) and ongoing evidence accumulation (Donner
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et al., 2009) can be expected to play a vital role in the perceptual
decision process. While further experiments are required to fully
disentangle the contribution of these different factors, we have
shown here that the brain is capable of extracting visual categories
based on two different modes. Novel categories are recognized
late, involving recurrent processing and increased activity in PFC.
This pattern of results is consistent with a re-labeling of existing
visual features, which would allow the system to flexibly learn new
categories and to quickly adjust to changing task-demands (Mc-
kee et al., 2014). Extended category experience, however, leads
to a significant speed-up in category selectivity, accompanied by
increased activity in occipitotemporal cortex. This suggests that
re-occurring categories are processed differently to allow for quick
and reliable recognition. Taken together, our results suggest that
the brain balances plasticity for acquisition of new and efficiency in
processing of known categories by relying on different networks.
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3.1 Layman summary

We have seen in Chapter 2 how we can learn new categories.
But in order to make sense of the world around us, we do not only
need to categorize our sensory input of a single sense, but combine
information from multiple sources while taking into account how
reliable they are. For example, when crossing the street, category
learning can tell us what a car and what a bike is. Usually we would
rely more on the input of our eyes than on our ears. However, we
can reassess the reliability of the information: on a foggy day
with poor visibility, we might prioritize listening for the difference
between the sounds a car or a bike make. How do we assess the
reliability of information generated within the brain itself?

We are able to see because the brain constructs an image based
on the patterns of activity of light-sensitive proteins in a part of the
eye called the retina. However, there is an area on the retina where
the presence of the optic nerve leaves no space for light-sensitive
receptors. This means that there is a corresponding point in our
visual field where the the eye and, therefore, the brain receives no
visual input from the outside world. To prevent us from perceiving
this gap, known as the visual blind spot, the brain fills in the blank
space based on the contents of its surrounding areas. While this is
usually accurate enough, it means that our perception in the blind
spot is objectively unreliable.

To find out whether we are aware of the unreliable nature of
visual perception in the blind spot, we presented volunteers with
two striped stimuli, one on each side of the screen. The center
of some of the stimuli were covered by a patch that broke up
the stripes. The volunteers’ task was to select the stimulus with
uninterrupted stripes. The key to the experiment is that if the
central patch appears in the blind spot, the brain will fill in the
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middle so that the stripes appear to be continuous. This means
that the volunteers will have to choose between two stimuli that
both appear to have continuous stripes. If they have no awareness
of their blind spot, we might expect them to randomly choose the
right or the left stimulus. Alternatively, if they are subconsciously
aware that the stimulus in the blind spot is unreliable, they should
choose the other one.

In reality, exactly the opposite happened: the volunteers chose
the blind spot stimulus more often than not. This surprising result
suggests that information generated by the brain itself is sometimes
treated as more reliable than sensory information from the outside
world. Future experiments should examine whether the tendency
to favor information generated within the brain over external
sensory inputs is unique to the visual blind spot, or whether it also
occurs elsewhere.

3.1 Layman summary
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3.2 Humans treat unreliable filled-in
percepts as more real than veridical
ones

Humans often evaluate sensory signals according to their reli-
ability for optimal decision-making. However, how do we evaluate
percepts generated in the absence of direct input that are, therefore,
completely unreliable? Here, we utilize the phenomenon of filling-
in occurring at the physiological blind-spots to compare partially
inferred and veridical percepts. Subjects chose between stimuli
that elicit filling-in, and perceptually equivalent ones presented
outside the blind-spots, looking for a Gabor stimulus without a
small orthogonal inset. In ambiguous conditions, when the stimuli
were physically identical and the inset was absent in both, subjects
behaved opposite to optimal, preferring the blind-spot stimulus as
the better example of a collinear stimulus, even though no relevant
veridical information was available. Thus, a percept that is partially
inferred is paradoxically considered more reliable than a percept
based on external input. In other words: Humans treat filled-in
inferred percepts as more real than veridical ones.
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3.3 Introduction: Decision making and
reliabilities of inferred stimuli

In order to make optimal and adaptive decisions, animals in-
tegrate multiple sources of sensory information across time and
space. One of the prime examples of this is observed when animals
are confronted with coherently-moving stimuli during random-dot
motion experiments. In such experiments, performance and the
corresponding neural activity vary proportionally to signal strength
in a way that is consistent with the progressive integration of
evidence over time (Shadlen, Britten, et al., 1996; Shadlen and
Newsome, 2001). Besides temporal accumulation, sensory integra-
tion is also possible by combining the information from multiple
sensory sources (Quigley et al., 2008; S Schall et al., 2009; Hol-
lensteiner et al., 2015; Wahn and Konig, 2015b; Wahn and Konig,
2015a; Wahn and Konig, 2016). In the case of multisensory percep-
tion, several experiments have shown that integration often occurs
in a statistically optimal way. This has been best demonstrated
in cue-integration tasks in which humans perform as if they were
weighting the different sources of information according to their re-
spective reliabilities (Ernst and Banks, 2002; Alais and Burr, 2004;
Kording and DM Wolpert, 2004; Tickle et al., 2016). This form of
statistical inference has also been demonstrated for cortical neu-
rons of the monkey brain, with patterns of activity at the population
level that are consistent with the implementation of a probabilistic
population code (Gu et al., 2008; Fetsch et al., 2012). In most of
these sensory integration experiments, the perceptual reliability of
different inputs is probed through quantitative manipulations of
the inputs’ signal-to-noise ratios (Heekeren, Marrett, Bandettini,
et al., 2004; Tassinari et al., 2006; Banko et al., 2011). However,
some percepts are unreliable not because they are corrupted by
noise but because they are inferred only from the context and thus
intrinsically uncertain. This occurs naturally in monocular vision
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at the physiological blind spot, where content is "filled-in" based
on information from the surroundings. In this case, no veridical
percept is possible at the blind spot location. Though changes in re-
liability due to noise directly result in behavioral consequences, the
effects of the qualitative difference between veridical and inferred
percepts that are otherwise apparently identical are unknown. We
recently reported differences in the processing of veridical and
inferred information at the level of EEG responses (Ehinger, Konig,
et al., 2015). We demonstrated that a qualitative assessment of
differences in reliability exists at the neural level in the form of low-
and high-level trans-saccadic predictions of visual content. Notably,
active predictions of visual content differed between inferred and
veridical visual information presented inside or outside the blind
spot. Although no difference was found between low-level error
signals, high-level error signals differed markedly between predic-
tions based on inferred or veridical information. We concluded that
the inferred content is processed as if it were veridical for the visual
system, but knowledge of its reduced precision is nevertheless pre-
served for later processing stages. In the present experiment, we
address whether such an assessment of a dichotomous, qualitative
difference in reliability is available for perceptual decision-making.
Using 3D shutter glasses, we presented one stimulus partially in the
participant’s blind spot to elicit filling-in and a second stimulus at
the same eccentricity in the nasal field of view outside of the blind
spot. The subject’s task was to indicate which of the two stimuli
was continuously striped and did not present a small orthogonal
inset (see Fig. 1A). Crucially, stimuli within the blind spot are filled-
in and thus perceived as continuous, even when they present an
inset. In the diagnostic trials, both stimuli were physically identical
and continuous, and subjects were confronted with an ambiguous
decision between veridical and partially inferred stimuli.

We evaluated two mutually exclusive hypotheses on how per-
ceptual decision-making could proceed when confronted with an
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ambiguous decision between veridical and inferred percepts. In
the first case, we hypothesized that subjects are unable to make
perceptual decisions based on an assessment of differences in relia-
bility between veridical and inferred stimuli. Therefore, subjects
would have an equal chance of selecting stimuli presented inside
or outside the blind spot. Alternatively, it might be possible to use
the information about the reduced reliability of filled-in informa-
tion. In this case, we expect subjects to follow an optimal strategy
and trust a stimulus presented outside the blind spot, where the
complete stimulus is seen, more often than when the stimulus is
presented inside the blind spot, where it is impossible to know the
actual content within the filled-in part.

3.3 Introduction: Decision making and reliabilities of inferred stimuli
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3.4 Results: A bias towards filled-in
stimuli

We conducted five experiments (see Fig. 1 and the methods
for a detailed description of the tasks). The first one tested the
presence of a bias against the blind spot location; the other four ex-
periments were replications of the first experiment with additional
control conditions. In the first two controls, we tested the existence
of biases between the nasal and temporal visual fields at locations
other than the blind spot. In the third control, we tested whether
an opposite bias existed when the task was reversed. The last
experiment controls whether the observed bias could be explained
by probability matching.

3.4.1 Experiment 1

In the first experiment, 24 subjects performed a 2-AFC task in
which they had to indicate which of two stimuli was continuously
striped instead of presenting a small orthogonal central inset (Fig.
1A, B). The stimuli were presented simultaneously in the periphery
at the locations of the blind spots or at equivalent eccentricity on
the opposite side (Fig. 1C, D). We used a 3D monitor and shutter
glasses that allowed for the controlled monocular display of the
stimuli. That means each stimulus was visible to a single eye only.
There were always two stimuli, therefore, in a given trial either
one or both eyes were stimulated (Fig. 1B). Importantly, subjects
always perceived the two stimuli at the same locations, to the left
and the right of the fixation cross. In this experiment there were
perceptually ambiguous trials, where two continuous stimuli were
perceived, and unambiguous trials where one stimulus contained a
visible inset.

Chapter 3 Predictions and Decision Making



Stimulation Percept

EE GEEEED could be wrong has to be correct
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Task 0% 100%

Select the continuous stimulus
50% 50%

stimulus diar

overlap 1

left eye right eye P
. fixation range 2.6° blind spot ~5° inset 2.4°
blind spot center - biind spot distance ~15°

Fig. 3.1 a) Striped stimuli used in the study. The inset was set to 50% of the average
blind spot size. The global orientation of both stimuli was the same, but in
different trials, it could be either vertical (as shown here) or horizontal (not
shown). b) Each stimulus was displayed individually either (partially) inside
or (completely) outside the blind spot. This example presents an inset stimulus
inside the subject’s left blind spot. However, due to filling-in, it is perceived as
continuous (right column). The task required subjects to select the continuous
stimulus, and it was designed to differentiate between two mutually exclusive
predictions: First, subjects cannot differentiate between the two different types
of stimuli and thus answer randomly. Alternatively, subjects have implicit or
explicit knowledge about the difference between inferred (filled-in) and veridical
contents and consequently select the stimulus outside the blind spot in ambiguous
trials. ¢) Two stimuli were displayed using shutter glasses. Each stimulus was
presented to one eye only, and it is possible that both are presented to the same
eye (as in the example depicted here). That is, the left stimulus could be shown
either in the temporal field of view (nasal retina) of the left eye (as in the plot)
or in the nasal field of view (temporal retina) of the right eye (not shown). In
this case, the trial was unambiguous: The stimulus with an inset was presented
outside the blind spot and could be veridically observed, therefore, the correct
answer was to select the left stimulus. d) The locations of stimulus presentation in
the five experiments. All stimuli were presented relative to the blind spot location
of each subject. All five experiments included the blind spot location (green).
In the second and fifth experiment, effects at the blind spot were contrasted
with a location above it (purple). In the third experiment, the contrasts were in
positions located to the left or the right of the blind spot. Note that both stimuli
were always presented at symmetrical positions in a given trial, the position of
the stimuli differed only across trials.
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In the unambiguous trials, an orthogonal inset was present in
one of the stimuli. Importantly, in these trials, the stimulus with
the inset was outside the blind spot and therefore clearly visible.
As expected, subjects performed with near-perfect accuracy (Fig.
2, unambiguous trials, blue data), choosing the continuous stim-
ulus in an average of 98.8% of trials (95%-quantile over subjects
[96.4%-100%]). There were two types of ambiguous trials. In
the first type (Fig. 2, ambiguous control, red data), one of the
following applied: both stimuli were continuous and appeared
outside the blind spots in the nasal visual fields (Fig. 2, row 3);
both were continuous and appeared inside the blind spots (Fig. 2,
row 4); or one was continuous, the other had an inset, and both
appeared inside the blind spots with the inset either in the left or
the right blind spot (Fig. 2, rows 5 and 6). In the case when a
stimulus with an inset was present, this central part was perfectly
centered inside the blind spot (Fig. 1A), and in consequence was
perceived as continuous due to filling-in. Thus, in all four versions,
subjects perceived two identical stimuli, and there was no single
correct answer. In this type of ambiguous trial, subjects showed a
small global leftward bias and chose the left stimulus in 53.6% of
trials (Fig. 2, continuous vertical line). In addition, no difference
can be seen between the perception of pairs of filled-in stimuli
and pairs of veridical continuous stimuli (Fig. 2, rows 3 vs. 4-6).
This type of ambiguous control trial confirms that filling-in was
accurately controlled in our experiment.

In the second type of ambiguous trials one stimulus was pre-
sented inside and the other outside the blind spot (Fig. 2, am-
biguous diagnostic, data in green). This allowed us to test directly
between two rival predictions: whether subjects will show a bias
against the stimulus that is partially inferred (inset area inside the
blind spot) and in favor of the veridical stimulus (in the opposite
visual field), or no bias. Selecting the filled-in stimulus is a subop-
timal decision because the stimulus presented partially in the blind
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Fig. 3.2 a) The left column shows schematics of the actual stimulation and the associated

percepts for the corresponding data presented in the right panel. A dark-lined
circle, where present, indicates that the stimulus was presented in the blind
spot and, consequently, an inset stimulus within was perceived as a continuous
stimulus due to filling-in. The plot to the right shows each subject’s (n=24)

average response and the group average (95% bootstrapped confidence intervals,

used only for visualization). The results from unambiguous trials (blue) show
that subjects were almost perfect in their selection of the continuous stimulus
when an inset was visible. For the first type of ambiguous control trials (red),
both stimuli were presented either outside or inside the blind spot. Here, only a
global bias toward the left stimulus can be observed (solid line, the mean across
all observed conditions in red). Note that the performance when presenting
an inset in the blind spot was identical to the one of presenting a continuous

stimulus in the blind spot. The ambiguous diagnostic conditions (green) show the,

unexpected, bias toward the blind spot (for either side).b) Statistical differences
were evaluated by fitting a Bayesian generalized mixed linear model. In the
model, the left and right ambiguous diagnostic conditions were combined in a
single estimate of the bias for nasal or temporal stimuli (outside or inside the
blind spot respectively). The plot shows the average effect of each subject (small
yellow dots), the bootstrapped summary statistics of the data (yellow errorbar),
and the posterior 95% credibility interval model estimate (black errorbar).
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spot is the only one which could possibly contain the inset. This is
explicit in the cases where an inset is shown in the blind spot but
rendered invisible by filling-in (Fig. 2a, ambiguous trials with an
inset stimulus). For analysis, we modeled the probability increase
of choosing the right stimulus if the right stimulus was presented in
either the temporal visual field of the right eye (blind spot) or the
nasal visual field of the left eye (non-blind spot). A similar factor
was used for the left stimulus. Subsequently, the two one-sided
model estimates were collapsed to a single measure of preference
for stimulus presented at the nasal or temporal visual field (outside
or inside the blind spot respectively). As a model for inference, we
used a Bayesian generalized mixed linear model. There were three
additional factors in the model (handedness, dominant eye, and
precedent answer) that are not the focus of the experiment and
are thus reported in the methods section (see "Effects not reported
in the Results section"). Figure 2a (ambiguous diagnostic, data in
green) and 2b show that subjects indeed presented a bias. However,
in contrast to our expectations, subjects were more likely to choose
the filled-in percept with a 15.01% preference for stimuli presented
in the temporal visual field (CDIg5 8.49%-21.08%). In other words,
when subjects had to decide which of the two stimuli (both per-
ceived as being continuous, and in most cases actually physically
identical) was less likely to contain an inset, they showed a bias for
the one in which the critical information was not sensed directly
but inferred from the surrounding spatial context. Remarkably,
this result is at odds with both of our experimental predictions
that postulated either no bias or a bias in favor of the veridical
stimulus.

3.4.2 Experiment 2

The second experiment was designed to replicate the unex-
pected result of the first experiment and evaluate whether the blind
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spot bias observed was due to systematic differences between nasal
and temporal retinae. In experiment 1, we presented stimuli at
mirror eccentricities inside and outside the blind spot, i.e. temporal
and nasal respectively (see Fig. 1C). In experiment 2, we tested
whether the bias in experiment 1 was specific to the blind spot
location or related to known differences between the temporal and
nasal retina (Fahle and Schmid, 1988). There is higher photore-
ceptor density (Curcio et al., 1990), spatial resolution (Rovamo
et al., 1982), luminance discrimination (Poppel et al., 1973) and
orientation discrimination (Paradiso and Carney, 1988) at locations
that project to the nasal retina (the temporal visual field where the
blind spots are located). Thus, we repeated our experiment with
a new group of subjects (n=27) and an additional experimental
condition. In this new condition, the two stimuli were displayed
at symmetrical locations above the blind spot (25° above the hori-
zontal meridian; see Fig. 1D, purple location). The results of this
second experiment replicate the observations of experiment 1 (Fig.
3A): subjects showed a bias for selecting the stimulus presented
inside the blind spot (12.5%, CDIg; 7.35%-17.49%). However,
subjects also presented a bias in the control condition, toward the
stimuli presented in the temporal visual field above the blind spot
(6.63%, CDIg; 0.77%-12.3%). The bias was nevertheless stronger
inside the blind spot (paired-diff: 6.11%, CDIy5 1.16%-10.78%).
In summary, additionally to the bias inside of the blind spot area,
we observed that subjects also showed a smaller bias for stimuli
presented to the nasal retina (temporal visual field).
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Fig. 3.3 Two control experiments were designed to test whether the observed bias for
the blind spot could be explained by a general bias for stimuli presented in
the temporal visual field. a) Results of experiment 2. In a given trial, stimuli
were presented either at the locations corresponding to the blind spot or at
locations above it. Results are presented as in figure 2b, with the addition of
within-subject differences between blind spot and control locations (in purple). b)
Results of experiment 3. In a given trial, stimuli were presented at the locations
corresponding to the blind spot or at locations to inward (toward the fixation
cross) or outward (away from the fixation cross) to it. Note that the blind spot
effect is replicated in both experiments. In addition, both blind spot effects are
larger than in any control location.
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3.4.3 Experiment 3

To better delineate the distribution of bias across the tem-
poral visual field and to clarify if the blind spot location is, in
fact, special, we performed a third experiment on a new group of
subjects (n=24). Here, we compared biases in the blind spot to
two other control conditions flanking the blind spot region from
either the left or the right (Fig. 3B). The blind spot location again
revealed the strongest effect of a bias for the temporal visual field
(13.18% CDlIgy5 6.47%-19.64%), while the locations inwards and
outwards resulted in a 2.85% and 4.8% bias, respectively (CDIys
-1.1%-6.65%; CDIg5; 0.58%-8.89%). The bias of both control loca-
tions was different from the bias of the blind spot location (BS vs.
inward: 10.51%, CDIg5 3.55%-17.29%; BS vs. outward: 8.61%,
CDIg5; 0.98%-16.04%). In this experiment, as in experiments 1 and
2, we observed a bias that is specific to the blind spot region.

3.4.4 Experiment 4

The results of the three previous experiments suggest that
subjects considered the filled-in percept a better exemplar of a con-
tinuous non-inset stimulus, in disregard of the physical possibility
of the presence on an inset inside the blind spot. To confirm this,
we performed a fourth experiment with a new group of subjects
(n=25). This experiment was identical to the first experiment,
except that in this case, the subjects’ task was to choose the stim-
ulus with an inset, instead of the continuous one. In this case,
if a filled-in stimulus is indeed considered a more reliable exem-
plar of a continuous stimulus, the non blind spot stimulus should
be preferred in the diagnostic trials. This was the case; subjects
showed a bias for selecting the stimulus presented outside the
blind spot (7.74%, CDIg5 1.56%-13.68%, Fig. 4a), thus resulting
in the expected reversal of the bias pattern observed in the first
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three experiments. This pattern is again suboptimal, since this time
the filled-in stimulus is the one that could conceal the target. The
result of this experiment indicates that the observed biases do not
correspond to an unspecific response bias for the blind spot, and
instead are a consequence of considering the inferred percepts as
more reliable exemplars of a continuous stimulus.

a Temporal Over Nasal Preference [%]
Nasal Stimulus selected Temporal Stimulus selected
=20 0 20 40 60
Blind Spot Reverse Task
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Fig. 3.4 a) Results of experiment 4. This control was the same as experiment 1, except
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that subjects have to choose the stimulus with an inset (instead of the continuous
one). b) Results of experiment 5. This control was similar to experiment 2, except
that no inset stimulus was ever experienced in the control location above in the
temporal visual field.

3.4.5 Experiment 5

We performed a final control to evaluate whether the observed
bias for a filled-in stimulus was not a result of subjects using a
probability matching heuristic. It is possible that, in order to solve
the ambiguous task, subjects used their knowledge of the rate of
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appearance of continuous and inset stimuli at different locations as
learned during unambiguous trials. As it is impossible to experience
an inset in the blind spot, the base rate of continuous stimuli at that
location is 1.0. Therefore, when confronted with two stimuli that
are apparently identical, one inside and one outside the blind spot,
subjects might just apply the base rate they have learned instead of
relying on a perceptual estimate. If this is the case, subjects should
show a bias for the location where they experienced exclusively
continuous stimuli during unambiguous trials, which could result
in a bias pattern similar to the one observed in experiments 1-3.
To evaluate this alternative explanation, we performed a further
experiment with the same group of subjects that participated in
experiment 4. Experiment 5 was similar to experiment 2, with
control trials presenting stimuli above the blind spot. However,
in contrast to experiment 2, subjects never experienced an inset
in the temporal field in the above positions during unambiguous
trials (see Figure 1 - Figure supplement 1 for a detailed overview
of trial randomization). This results in an identical base rate of
occurrence of a continuous stimulus in the temporal field for both
the above and blind spot locations. Consequently, if the behavior
observed in the previous experiments was a result of probability
matching, in this experiment we should observe the same bias at
both the blind spot and the temporal field above locations. Subjects
showed a bias for selecting the stimulus presented inside the blind
spot (14.53%, CDIgy5 7.56%-21.09%, Fig. 4b), replicating again the
results of experiment 1-3. At odds with the probability matching
hypothesis, the bias for the temporal field in the above location
was only 5.84%, not different from 0 (CDIy5 -1.33%-13.01%) and
similar to what was observed in experiment 2. This bias was differ-
ent from the bias observed in the blind spot (paired-diff: 8.95%,
CDIy5 3.91%-13.85%). The same group of subjects participated in
experiment 4 and 5, allowing us to make a within subjects com-
parison between the two tasks. Subjects’ performance in these two
tasks was negatively correlated (r = -0.61, p = 0.002, see Figure 4
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- Figure supplement 1). Taking the task reversal of experiment 4
into account, this result indicates that subjects were consistently
biased to consider the inferred filled-in stimulus a better exemplar
of a continuous stimulus. The result of experiment 5 thus gives evi-
dence that the bias for the filled-in stimulus was not a consequence
of subjects matching the base rate of the occurrence of different
stimuli during unambiguous trials.

3.4.6 Reaction time analysis

A bias for the temporal visual field, especially the blind spot,
could also be reflected in the distribution of reaction times. We
compared the reaction times of trials where subjects selected a
stimulus in the temporal visual field against trials where the stimu-
lus in the nasal visual field was selected. The reaction time analysis
was not planned comparisons, thus, in contrast to the other anal-
yses presented here, it is explorative. In the first experiment, we
observed an average reaction time of 637 ms (minimum subject
average: 394 ms, maximum 964 ms; Fig. 5). We used a linear
mixed model to estimate the reaction time difference for selecting
a stimulus presented inside the blind spot (temporally) against
one outside the blind spot (nasally). In the first experiment, after
excluding three outliers, we observed this effect with a median
posterior effect size of 13 ms faster reaction times when selecting
the blind spot region (CDIy5%) 2-42 ms). The three outliers (on the
right of the vertical dashed line in Fig. 5) were identified visually
and removed because they were distinctively different from the
rest of the population. The mean of the outliers was 5.2 SD away
from the remaining subjects. The outliers were nevertheless in
the same direction of the reaction time effect and did not change
its significance (with outliers, 63 ms, CDIg5 7-124 ms). However,
faster reaction times while selecting the blind spot stimulus were
not present individually in the other four experiments. The nomi-
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Fig. 3.5 Reaction times of trials where the nasal stimulus was chosen minus the reaction
times of trials where the temporal stimulus was chosen. Single subject estimates
and 95% CI posterior effect estimates are shown. The black (combined) estimate
results from a model fit of all data combined, the individual confidence intervals
represent the experiment-wise model fits. We observe a reaction time effect only
inside the blind spot.

nal differences were in the same direction as experiment 1 but not
significant (Exp.2: 4 ms, CDIg; -14-23 ms; Exp.3: 22 ms. CDIy;
-3-39 ms; Exp.4: -1 ms CDlIg5 -20-21 ms; Exp.5: 4 ms CDlg5 -15-23
ms). Non-significant results were obtained for the other locations
tested (above Exp.2: 8 ms, CDIgy5 -38-53 ms; above Exp.5: 8 ms
CDIg5 -17-32 ms; outward: 2 ms CDIgs5 -13-16 ms; inward: 4 ms,
CDIy5 -29-37 ms). After combining all data (without experiment
4 as the task was reversed), we observed a reduced reaction time
for decisions for the blind spot stimulus with 10 ms (CDIg; 2-17
ms) but not in any other location. We do not find this small bias in
any experiment individually (except Exp. 1) but only after pooling
over experiments and therefore, we should interpret it cautiously.
In conclusion, subjects selected stimuli in the blind spot slightly
faster than stimuli outside the blind spot. The same effect does not
appear for the other temporal control locations.
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combined (black) except experiment 4 (in-
versed task). We also show for each experi-
ment the 95% CI of bootstrapped means sum-
mary statistics of the data (yellow). Next, we
show difference values between the blind
spot and all other control locations (model
dark, raw data pink). As discussed in the
text, the control locations outward, inward
and above do not differ (4th last to 2nd last
row), and thus we compare the blind spot
effect to all locations combined (last row).

For an overview of all
experiments and the results
of a Bayesian logistic mixed
effects model that combines
all experiments, see figure
6, Figure 6 - Figure supple-
ment 1 and supplementary
Table 1. In the combined
model, we did not find
any differences between the
temporal field effects at lo-
cations other than the blind
spots (Figure 6, 4th last to
2nd last row). That is, the
temporal field effects of the
locations inward, outward
and above were not differ-
ent from each other. For
the sake of clarity, we com-
bined these location levels.
Keeping everything else con-
stant, we observed that if
we present one stimulus in
the blind spot against the
equidistant nasal location,
subjects are 13.82% (CDIy5

10.84%-16.78%, t-test, t= 8.7, df = 98, p < 0.001) more likely to
choose the stimulus in the blind spot. This bias is stronger than the
effect observed elsewhere in the temporal field by 9.35% (CDIys
6.25%-12.47%; paired t-test, t = 4.8, df = 74, p<0.001). In sum-
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mary, subjects showed a robust bias for the blind spot locations
that could not be explained by a non-specific bias for the temporal
visual field. In conclusion, when confronted with an ambiguous
choice between veridical and inferred sensory information, human
subjects showed a suboptimal bias for inferred information.
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3.5 Discussion

When confronted with identical physical stimulation, subjects
showed a consistent bias for blind spot inferred percepts which
was stronger than the bias at any other location in the temporal
visual field. Why do subjects choose the blind spot location when it
is objectively the least reliable? Our interpretation takes the results
at face value: subjects must possess at least implicit information
about whether a percept originates from the blind spot in order
to show a bias for or against it. At the same time, the veridical
information from the other stimulus is also available. This indi-
cates that perceptual decision-making can rely more on inferred
than veridical information, even when there is some knowledge
about the reduced reliability of the inferred input available in the
brain (Ehinger, Konig, et al., 2015). This is also supported by
the results of the reaction time analyses that indicated a faster
evidence accumulation for the inferred percepts. In other words,
the implicit knowledge that a filled-in stimulus is objectively less
reliable does not seem to be used for perceptual decision-making.
This suboptimal decision between qualitatively different veridical
and inferred inputs is in contrast to properties of standard sen-
sory integration. There, reduced reliability derived from noisy but
veridical signals results in a corresponding weighting of inputs
and consequently in optimal decisions (Kording, Beierholm, et al.,
2007). In the following, we discuss two potential explanations of
this discrepancy of processing filled-in information and standard
sensory integration. The first explanation focuses on physiologi-
cal properties of neuronal and small circuits’ response properties
at and around the blind spot region. The second explanation
addresses the conceptual level and uses the general notion of pre-
dictive coding. First, although the filled-in percept is by definition
independent of the stimulus within the blind spot, it is nevertheless
based on the information sensed by the region around the blind
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spot in the nasal retina. We might assume that an area, e.g. in the
nasal retina around the blind spot region, that has a lower contrast
threshold also shows stronger neuronal signals for super-threshold
stimuli. This could in principle lead to a filled-in stimulus with
increased salience as compared to the veridical stimulus. Effec-
tively, this explanation proposes that differences in physiological
properties of nasal and temporal retinae are transferred to the
filling-in process making it the "better" candidate stimulus in an
ambiguous condition. Above we already introduced some evidence
for psychophysical differences between the nasal and temporal
visual field (Fahle and Schmid, 1988). There is also some evidence
for the superiority of the blind spot in a Vernier task (Crossland
and Bex, 2009). The areas around the blind spot showed greater
performance compared to areas at similar eccentric locations in
the nasal visual field. It is still unclear whether this goes over and
beyond the aforementioned temporal/nasal bias. Unfortunately,
this explanation runs into the problem that the sensitivity in the
region corresponding to the blind spot in the other eye is also
enhanced compared to regions at similar eccentricities (Wolf and
Morandi, 1962; Midgley, 1998). This suggests that differences
between the eyes in the area around the blind spot should be the
smallest within the contrast between temporal and nasal retina.
Moreover, we explicitly controlled for temporal-nasal differences
in experiments 2 and 3, and found that it is not enough to explain
the effect specific to the blind spot. Thus, an explanation of the
observed effects based on known differences in retinal properties is
currently tentative at best. An alternative explanation is based on
the framework of predictive coding (K Friston, J Kilner, et al., 2006;
K Friston, Adams, et al., 2012; Summerfield and Lange, 2014).
Specifically, context information of static stimuli would be used
to predict local stimulus properties leading to the phenomenon of
filling-in. The predicted sensory input would then be compared to
the incoming sensory input, and an error signal representing the
mismatch would be returned. In the absence of veridical informa-
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tion, no deviation and thus no error signal would occur. Effectively,
the filled-in signal might have less noise. Reduced noise, in turn,
results in a smaller prediction error and higher credibility at later
stages. A faster reaction time to the filled-in stimulus compared to
the veridical stimulus could suggest that the integration process
is indeed biased with less noise. In summary, although the results
reported here seem compatible with the predictive coding frame-
work, this explanation presently remains vague and speculative. In
conclusion, we find a new behavioral effect where subjects prefer a
partially inferred stimulus to a veridical one. Though both appear
to be continuous, the filled-in one could hide an inset and is, there-
fore, less reliable. In this perceptual decision-making task, subjects
do not make use of high-level assessments about the reliability of
the filled-in stimulus. Even more so, they prefer the unreliable
percept.
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3.6 Methods: An ambiguous 2-AFC task
and a Bayesian mixed model

Many of the methods are taken from Ehinger, Konig, et al.
(2015). All data and analyses are available at https://osf.io/w-
phbd.

3.6.1 Subjects

Overall, 175 subjects took part in the experiments. Of the sub-
jects, 32% (n=56) were removed due to the screening experiments
described below. An additional 3% (n=6) were removed due to
low performance (n=2, <75% in at least two conditions with a
visible unique inset) or because they responded to the stimuli with
the inset stimulus instead of the continuous stimulus (n=4). The
experimental data were not recorded in 7% (n=13) due to eye
tracking calibration problems (n=4) and other issues during data
collection (n=9). The remaining 100 subjects were recorded and
analyzed in the following experiments. For the first experiment, 24
subjects entered the analysis (average age 21.9 years, age range 18-
28 years, 12 female, 20 right-handed, 16 right-eye dominant). 15
of these subjects participated in the EEG study reported by Ehinger,
Konig, et al. (2015). In the second experiment, 27 subjects entered
the analysis (average age 22.4 years, age range 19-33 years, 15
female, 25 right-handed, 19 right-eye dominant). In the third, 24
subjects entered the analysis (average age 21.9 years, range 19-27
years, 19 female, 23 right-handed, 16 right-eye dominant). In the
fourth experiment, we report the results of 25 subjects (average
age 22.1, range 18-35, 20 female, 24 right-handed, 14 right-eye
dominant). In the last experiment, the same set of subjects partic-
ipated as in experiment 4 with the exception of a single subject,
who did not finish the both parts of the combined session with
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experiment 4 and 5. All subjects gave written informed consent,
and the experiment was approved by the ethics committee of the
Osnabriick University. For the initial experiment, we set out to
analyze 25 subjects. For the second experiment, we calculated a
sample size of 18 subjects based on the results of experiment 1 in
order to have a power of 90% (calculated with gPower, (Faul et
al., 2009), matched pair means cohen’s-d = 0.72, planned-power
90%). We disclose that the results of the initial analysis with this
group were not conclusive about differences between the location
inside and the location above the blind spot. Although the sample
size was large enough to replicate the blind spot main effect, it was
not adequate to find the difference between locations. Therefore,
we decided to increase the number of subjects by 50% (n=9). For
the third, fourth and fifth experiments, we used an empirical power
analysis based on MLE of a linear mixed model in order to achieve
90% power for the smallest effect observed outside the blind spot.
This resulted in a sample of 24 subjects.

3.6.2 Screening

As described above, many subjects failed a simple screening
test. In this pre-experiment, we showed a single stimulus in the
periphery either inside or outside the blind spot in the left or right
visual field. In two blocks of 48 trials, subjects indicated which
stimulus (no inset vs. inset) had been perceived. We thought
of this simple experiment to evaluate our blind spot calibration
method, as an inset stimulus inside the blind spot should have
been reported as no inset. The first block was used as a training
block. In the second block, we evaluated the performance in a
conservative way. No feedback was given to the subjects. If the
performance was below 95% (three errors or more), we aborted
the session because the participant was deemed to be too unreliable
to proceed further with our experiment. We analyzed the data of

Chapter 3 Predictions and Decision Making



those that failed the screening experiment, in four categories of
failures that demonstrate the heterogeneity of subjects: Subjects
reported inset when an inset was shown in the left blind spot
(44%), or in the right blind spot (78%). Subjects did not report
the inset of a stimulus presented outside the blind spot (37%), and
subjects reported an inset, even though a continuous stimulus was
shown (80%). The percentage represents how many subjects had
at least one trial where a classification-criterion was fulfilled and
thus do not add to 100%. The rates for subjects that did not fail
the criterion were 16%, 21%, 13% and 22% respectively. The high
percentage in the last category of removed subjects, in which they
report an inset even though no inset was visible, strongly suggests
that subjects failed the task not due to blind spot related issues,
but due to inattention or perceptual problems. Even though we
observe more wrong reports in the right than the left blind spot
position, there was nevertheless no correlation with calibration
position or size. Overall, 57% (n=100) of the recruited subjects
passed this test and were admitted to subsequent experiments.

3.6.3 Eye Tracking, Screen, Shutter Glasses

A remote, infrared eye-tracking device (Eyelink 1000, SR Re-
search) with a 500 Hz sampling rate was used. The average cal-
ibration error was kept below 0.5° with a maximal calibration
error of 1.0°. Trials with a fixation deviation of 2.6° from the
fixation point were aborted. We used a 24-inch, 120 Hz mon-
itor (XL2420t, BenQ) with a resolution of 1920x1080 pixels in
combination with consumer-grade shutter glasses for monocular
stimulus presentation (3D Vision, Nvidia, wired version). The
shutter glasses were evaluated for appropriate crosstalk/ghosting
using a custom-manufactured luminance sensor sampling at 20
kHz. The measured crosstalk at full luminance was 3.94%. The

3.6 Methods: An ambiguous 2-AFC task and a Bayesian mixed model

95



96

subject screen distance was 60cm in experiment 1, 2, 4, and 5 and
50 cm in the third experiment.

3.6.4 Stimuli

Modified Gabor patches with a frequency of 0.89 cycles/° and
a diameter of 9.6° were generated. Two kinds of patterns were
used (Fig. 1A): one completely continuous and one with a small
perpendicular inset of 2.4°. For comparison, the blind spot typically
has a diameter of 4°-5°. The Gabor had constant contrast in a
radius of 6.3° around the center. This ensured the same perception
of the continuous stimulus outside the blind spot in comparison to
a filled-in stimulus, where the inner part is inside the blind spot.
To account for possible adaptation effects, horizontal and vertical
stimuli were used in a balanced and randomized way across the
trials. Stimuli were displayed using the Psychophysics Toolbox
(Brainard, 1997) and Eyelink Toolbox (Cornelissen et al., 2002).
The stimuli were displayed centered at the individually calibrated
blind spot location. The stimulus at the location above the blind
spot in experiment 2 was at the same distance as the blind spot
but was rotated by 25° to the horizon around the fixation cross.
For the inward and outward condition of experiment 3, stimuli
were moved nasally or temporally by 8.6°. Thus the stimuli had
an overlap of only 1°. Less overlap is not possible without either
cutting the border of the screen or overlapping with the fixation
Cross.

3.6.5 Task

After a fixation period of 500 ms, we presented two stimuli
simultaneously to the left and right of the fixation cross. Subjects
were instructed to indicate via button press (left or right) which
stimulus was continuous. Each stimulus was presented either in

Chapter 3 Predictions and Decision Making



the temporal or nasal field of view. In some trials, the required
response was unambiguous, when one of the stimuli showed an
inset and the other did not (and the inset stimulus was presented
outside the blind spot). In many trials (80% of all experiments and
locations, 46% when the stimulus was shown above the blind spot
in experiment 2), both stimuli were continuous and no uniquely
correct answer existed (see Figure 1 - Figure supplement 1 for a
detailed overview of the balancing). All trials were presented in
a randomized order. If the subject had not given an answer after
10 seconds, the trial was discarded, and the next trial started. All
in all, subjects answered 720 trials over 6 blocks; in experiment
1 the trials were split up into two sessions. After each block, the
eye tracker and the blind spot were re-calibrated. After cleaning
trials for fixation deviation and blinks, an average of 662 trials
(90%-quantile: 585, 710) remained. For two subjects, only 360
trials could be recorded.

3.6.6 Bootstrap in figures

In several figures, we present data with summary statistics. To
construct the confidence intervals we used bias-corrected, accel-
erated 95% bootstrapped confidence intervals of the mean with
10,000 resamples. Note that the summary statistics do not need
to conform to the posterior summary estimates because they are
marginals. Only the posterior model values reflect the estimated
effect.

3.6.7 Blind spots

In order to calibrate the blind spot locations, subjects were
instructed to use the keyboard to move a circular monocular probe
on the monitor and to adjust its size and location to fill the blind
spot with the maximal size. They were explicitly instructed to
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calibrate it as small as necessary to preclude any residual flickering.
The circular probe flickered from dark gray to light gray to be more
salient than a probe with constant color (Awater, 2005). All stimuli
were presented centered at the respective calibrated blind spot
location. In total, each subject calibrated the blind spot six times.
For the following comparisons of blind spot characteristics, we
evaluated one-sample tests with the percentile bootstrap method
(10,000 resamples) of trimmed means (20%) with alpha = 0.05
(Wilcox, 2012). For paired two-sample data, we used the same
procedure on the difference scores and bias-corrected, accelerated
95% bootstrapped confidence intervals of the trimmed mean (20%).
We report all data combined over all experiments. In line with
previous studies (Wolf and Morandi, 1962; Ehinger, Konig, et al.,
2015), the left and right blind spots were located horizontally at
-15.52° (SD=0.57° CI:[-15.69°,-15.36°]) and 15.88° (SD=0.61°
CI:[15.70°,16.07°]) from the fixation cross. The mean calibrated
diameter was 4.82° (SD=0.45° CI:[4.69°,4.95°]) for the left and
4.93° (SD=0.46° CI:[4.79°,5.07°]) for the right blind spot. Left
and right blind spots did significantly differ in size (p=0.009, CI:[-
0.17°,-0.03°] and in absolute horizontal position (in relation to
the fixation cross; p<0.001, CI: [0.27°,0.45°]). On average, the
right blind spot was 0.36° further outside of the fixation cross. No
significant difference was found in the vertical direction (p=0.37),
but this is likely due to the oval shape of the blind spot in this
dimension and the usage of a circle to probe the blind spot. These
effects seem small, did not affect the purpose of the experiments
and will not be discussed further.

3.6.8 GLMM analysis

We fitted a Bayesian logistic mixed effects model predicting
the probability of responding right with multiple factors that rep-
resent the temporal over nasal bias and several other covariates
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described below. Because we were interested in the bias between
the nasal fields and the temporal fields of view, we combined both
predictors for the left and right temporal (and nasal, respectively)
locations and reported the combined value. Data were analyzed
using a hierarchical logistic mixed effects models fitted by the No-
U-Turn Sampler (NUTS, STAN Development Team). The model
specification was based on an implementation by Sorensen and
Vasisth (Sorensen et al., 2016). In the results section, we report
estimates of linear models with the appropriate parameters fitted
on data of each experiment independently. We also analyzed all
data in one combined model: there were no substantial differences
between the results from the combined model and the respective
submodels (Appendix table 1). The models are defined as follows
using the Wilkinson notation:

answer_ Right ~ 1 + Temporal Left«Location +
Temporal Right«Location +
Answer{Right ,(t—-1)} +
Handedness Right +
DominantEye Right +
(1 + Temporal LeftxLocation +
Temporal Right«xLocation +
Answer_{Right,(t—1)}|Subject)

And in mathematical terms:

Answer; yighy < Bernoulli(©;)

02' :logitil(Xwithianithin + Xbetweenﬂbetween"i_
N (0,7 Xyithin) + N(0,€))

Two factors were between subjects: handedness and dominant
eye. In total, we have four within-subject factors, resulting in eight
parameters: There are two main factors representing whether the
left, and respectively the right, stimulus was inside or outside the
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temporal field. Depending on the experiment, the main factor lo-
cation had up to three levels: the stimuli were presented outward
(Exp. 3), inward (Exp. 3), above (Exp 2, 5) or on (all experiments)
the blind spot. In addition, we modeled the interactions between
location and whether the left stimulus (and the right stimulus,
respectively) was shown temporally. In order to assure indepen-
dence of observation, an additional within-subject main factor
answer(t-1) was introduced, which models the current answer
based on the previous one. In frequentist linear modeling terms,
all within-subject effects were modeled using random slopes clus-
tered by subject and a random intercept for the subjects. We used
treatment coding for all factors and interpreted the coefficients
accordingly. In the model, we estimated the left and right temporal
field effects separately. For the statistical analysis, we combined
these estimates by inverting the left temporal effect and averaging
with the right temporal effect. We did this for all samples of the
mcmc-chain and took the median value. We then transformed these
values to the probability domain using the inverse-logit function,
subtracting the values from 0.5 and multiplying by 100. All results
were still in the linear range of the logit function. We calculated
95% credible intervals the same way and reported them as param-
eter estimates (CDIy5 lower-upper) in the text. These transformed
values represent the additive probability (in %) of choosing a left
(right) stimulus that is shown in the left (right) temporal field of
view compared to presenting the left (right) stimulus in the nasal
field of view, keeping all other factors constant.

3.6.9 Reaction times

Initially, we did not plan to analyze the reaction time data.
These analyses are purely explorative. The response setup consisted
of a consumer keyboard. Thus delays and jitters are to be expected.
However, with an average of 494 ambiguous trials per subject,
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we did not expect a spurious bias between conditions due to a
potential jitter. Reaction time data was analyzed with a simple
Bayesian mixed linear model:

RT ~ 1 + Temporal selected = Location +
(1 + Temporal selected * Location | Subject)

Only trials without a visible inset stimulus were used. Temporal se-
lected consists of all trials where a temporal stimulus was selected.
Because of the bias described in the results, there was no imbalance
between the number of trials in the two conditions (difference of
10 trials bootstrapped-CI [-2, 23]).

3.6.10 Bayesian fit:

We did not make use of prior information in the analysis
of our data. We placed implicit, improper, uniform priors from
negative to positive infinity on the mean and O to infinity for
the standard deviations of our parameters, the default priors of
STAN. An uninformative lkj-prior (=2) was used for the correlation
matrix, slightly emphasizing the diagonal over the off-diagonal
of the correlation matrix (Sorensen et al., 2016; B Carpenter et
al., 2017). We used six mcmc-chains using 2000 iterations each,
with 50% used for the warm-up period. We visually confirmed
convergence through autocorrelation functions and trace plots,
then calculated the scale reduction factors (Gelman, Hwang, et al.,
2014), which indicated convergence (Rhat < 1.1).

3.6.11 Posterior predictive model checking

Posterior predictive model checks were evaluated to test for
model adequacy (Gelman, Carlin, et al., 2013). Posterior predictive
checks work on the rationale that newly generated data based on
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the model fit should be indistinguishable from the data that the
model was fitted by originally. Due to our hierarchical mixed
model, we perform posterior predictive checks on two levels: trial,
and subject. In the first case, we generate new datasets (100
samples) based on the posterior estimates of each subject’s effect.
We compare the distribution of this predicted data with the actual
observed values for each (Figure 6 - Figure Supplement 2 A). At
the subject level, we draw completely new data sets, based on
the multivariate normal distribution given by the random effects
structure. We then compare the collapsed blind spot effect once for
the newly drawn subjects with the observed data (Figure 6 - Figure
Supplement 2 B). Taken together, these posterior predictive model
checks show that we adequately capture the very diverse behavior
of our subjects but also correctly model the blind spot effect on a
population basis.

3.6.12 Effects not reported in the result section

Here we report the result of the covariate factor based on
the combined model (all experiments modeled together). Note
that the interpretation of such effects naturally occurs on logit-
transformed values. Summation of different parameter-levels (as
necessary for treatment coding) on logit-scale can be very different
to summations of raw-percentage values. It can also be similar,
close to the linear scale of the logit-transform, i.e. close to 50%
(which we made use of for the blind spot effects reported at other
points of the manuscript). We did not find evidence for a different
global bias (main effect location) in any of the four stimulation
positions tested here. The dominant eye factor had an 11.51%
effect (CDIg5 2.78% - 19.59%) on the global bias. Thus subjects
with a dominant right eye also showed a preference to the right
stimulus over the left one, irrespective of whether the stimulus
was visible through the left or the right eye. We find a global bias
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(the intercept, -26.75% CDlIg; -38.18% - -9.29%, with treatment
coding) toward choosing the left stimulus; this might reflect that
in the first two experiments we instructed subjects to use the
right hand, thus they used their index and middle fingers. In the
third experiment we instructed subjects to use both index fingers,
resulting in a decreased bias to the left, with a shift more to the
right, and thus more to balanced answers, of 12.24% (CDIy;5 -1.98
- 24.16%]). We did not find evidence for a bias due to handedness
(7.71%, CDIg5 -8.96% - 22.75%). There was an influence of the
previous answer on the current answer. We observe a global effect
of 7.86% (CDIy50.53% - 14.95%), which suggests that subjects
are more likely to choose e.g. the right stimulus again when
they have just chosen right in the previous trial. For this effect
it is more important to look at random effect variance, which
is quite high with a standard deviation of -31.4 (CDIy5 28.27% -
34.69%), suggesting that there is a large variation between subjects.
Indeed, a closer look at the random slopes of the effect reveals
three different strategies: Some subjects tend to stick the same
answer, some subjects are balanced in their answers without any
trend, and some subjects tend to regularly alternate their answers
in each trial. Note that this behavior does not seem to influence
any of the other effects: We do not see any correlation between
the random effects, except for the correlation between the n-1
effect and the intercept (-0.55, CI: -0.72, -0.34). This correlation
means that subjects who tend to alternate their keypresses will
not have a strong bias in the intercept, or the other way around,
subjects who press the same key all the time also have a bias
towards this key. Other extended models we considered showed
no effect when both stimuli were in the temporal field, nor any
three-way interaction. Following standard procedures to avoid
spurious effects of unnecessary degrees of freedom, we removed
these variables from the final model.
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4.1 Layman summary

In Chapter 3 we discussed how the reliability of a signal is
incorporated into a perceptual decision. In this chapter we again
look at the same question but from a different angle: What happens
if we make an eye movement?

We perceive the world as a stable, continuous visual stream;
we very rarely move the eye without a rough idea of what we will
see next. Some of these rough ideas, also called predictions, will
be more reliable, others less. If such a prediction was wrong we
will be surprised. For example, if we make an eye movement and
recognize that, what we thought was a dark bush, is actually a
bear, we are surprised.

In this chapter we discuss an experiment that investigates
whether we show differently strong surprise signals to wrong pre-
dictions if the reliability of the prediction is low or high. While
recording brain activity, we sometimes exchanged the stimulus
during an eye movement. Then, the peripheral prediction before
the eye movement is violated and we hypothesized that the brain
produces a surprise signal. Indeed our experiment showed that if
the peripheral prediction is wrong, this results in a surprise signal.
Next we changed how reliable the predictions are. For this, we
used the same trick as in Chapter 3 - the blind spot - where the
brain fills in the percept. Therefore, the information for the predic-
tion is now completely generated by the brain, without additional
incoming information. In our experiment we showed that this also
influences our surprise signal. In contrast to Chapter 3, it seems
we are less surprised when the prediction is unreliable.
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4.2 Predictions of visual content across
eye movements and their
modulation by inferred information

The brain is proposed to operate through probabilistic infer-
ence, testing and refining predictions about the world. Here, we
search for neural activity compatible with the violation of active
predictions, learned from the contingencies between actions and
the consequent changes in sensory input. We focused on vision,
where eye movements produce stimuli shifts that could, in prin-
ciple, be predicted. We compared, in humans, error signals to
saccade-contingent changes of veridical and inferred inputs by con-
trasting the electroencephalographic activity after saccades to a
stimulus presented inside or outside the blind spot. We observed
early (<250 ms) and late (>250 ms) error signals after stimulus
change, indicating the violation of sensory and associative predic-
tions, respectively. Remarkably, the late response was diminished
for blind-spot trials. These results indicate that predictive signals
occur across multiple levels of the visual hierarchy, based on gener-
ative models that differentiate between signals that originate from
the outside world and those that are inferred.

4.2 Abstract Ehinger 2015 / Kénig 2016
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4.3 Introduction: Eye movements test
visual hypotheses

The brain is likely to operate constructively, generating prob-
abilistic models of reality that are in continuous testing against
sensory inputs. Functionally, probabilistic models can success-
fully explain a large range of phenomena, like perceptual illusions
(Weiss et al., 2002), spontaneous activity representing uncertainty
(Fiser et al., 2010), and the optimal integration of multimodal sig-
nals (D Wolpert et al., 1995; Ernst and Banks, 2002; Kérding and
DM Wolpert, 2004). To find neural correlates of such processes,
researchers look for patterns of brain activity compatible with prob-
abilistic neural computation, in which predictive coding is one of
the most popular models. In predictive coding, higher areas in a
brain hierarchy predict the activity of lower areas by inhibitory
feedback, while lower areas generate corresponding error signals
in relation to their own feedforward inputs. In current formula-
tions of predictive coding, the precision-weighted prediction errors
are thought to be encoded predominantly in superficial pyramidal
cells of the cortex (Feldman and KJ Friston, 2010; Bastos et al.,
2012), and thus measurable by electroencephalography (EEG).
Previous EEG experiments, which revealed neural signatures com-
patible with predictive coding, have mostly relied on passive tasks,
in which the predictability of the stimuli is imposed externally.
However, the predictive coding framework can also embrace pre-
dictions that are the consequences of agents’ self-generated actions,
in line with recent proposals of embodied cognition that emphasize
the role of the body and self-generated action for perception (AK
Engel et al., 2013). Eye movements can be considered as experi-
ments in the visual domain, testing hypotheses about visual content
through actions (K Friston, Adams, et al., 2012). Given that there
is evidence for predictive coding in early visual areas for passive
stimulation (Murray et al., 2002; Summerfield, Trittschuh, et al.,
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2008; Alink et al., 2010; Kok et al., 2012), it is conceivable that
the shifts of the visual input produced by eye movements could,
in principle, result in predictable signals in all levels of the visual
hierarchy. Moreover, active sensory predictions could also exist for
signals that are generated in the absence of actual inputs. This
occurs naturally in the retina’s blind spot, which is demonstrable
in monocular vision as a percept that is filled-in from the surround-
ings’ content. We combined eye-tracking and EEG measurements
to evaluate the existence and timing of predictive signals that are
caused by human subject’s eye movements. Crucially, in our ex-
perimental design we measured prediction error responses in the
context of both veridical (precise) sensory information and inferred
(imprecise) visual cues, presented outside and within the blind spot
respectively. Two alternatives are conceivable in the case of blind
spot stimulation: First, feedforward activity of neurons related
to filling-in is taken by the brain as if it was actual input, and
therefore, no differences should exist between prediction violations
inside or outside the blind spot. Alternatively, within the brain’s
generative models, there is an expected uncertainty about the blind
quality of filled in information; therefore, we would expect to see
an attenuated error response when the violations were based upon
imprecise filling-in, when stimuli were presented in the blind spot,
relative to when they were not.

4.3 Introduction: Eye movements test visual hypotheses
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4.4 Methods: Gaze-dependent stimulus
changes and inferred stimuli

441 Overview

To find signals compatible with predictive errors that can be
differentiated from non-predictive remapping signals, we com-
pared EEG responses to stimuli that were changed or unchanged
during the saccade that brought it to the center of the gaze. Our
study design has effectively two key factors (see Figure 1); namely,
a stimulus change during the saccade (or not) and an initial pre-
sentation of the stimulus (pre-saccadic) within the blind spot (or
not). The stimulus change involved rotating the inner segment of
a circular grating to create an inner visual feature, in which the
direction of the grating was orthogonal to the surround. Crucially,
this visual feature (inset) was smaller than the blind spot resulting
in perceptual filling-in when presented within the blind spot. We
presented stimuli within the blind spot using monocular stimuli
(by using shutter glasses), but alternatively to the right or left eye.
This resulted in a design with four factors in total: stimulus Change
(present or absent), Inset (present or absent), Blind spot (within or
without) and Position (peripheral initial presentation right versus
left).

4.4.2 Subjects

Fifteen subjects participated in the study (mean age: 22.5y
[18-28], 1 of whom was left-handed, and 6 of whom had a left-
dominant eye; 9 were female). All subjects gave written consent,
and the experiment was approved by the local ethics committee.
An additional 9 subjects were rejected before their EEG recording
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Fig. 4.1 A) Trial time course BC) Each set of two panels represents what is presented to
each eye with the shutter glasses. After a fixation interval, a stimulus appeared
monocularly in the periphery (upper panels). After the disappearance of the
fixated crosshair, the subjects perform a saccade to the center of the pre-saccadic
stimulus, which becomes the post-saccadic stimulus (lower panels). The colored
circles represent the location of the blind spot in each eye and were not displayed
on the screen. B) An example of a trial without change: the inset stimulus,
presented outside the blind spot, does not change before and after the saccade.
Importantly, presenting an inset stimulus inside the blind spot always leads to fill-
in and therefore the perception of a continuous stimulus. We therefore recorded
the inset no-change condition only outside the blind spot.C) A trial with change:
the continuous stimulus, presented inside the blind spot, is exchanged during
the saccade to an inset stimulus. D) Gabor patches used as stimuli. Horizontal
stimuli were also used. The inset was set to approximately 50% the diameter of
the blind spot.
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Fig. 4.1 E) Calibration of the blind spot and saccades’ end-points. The gray ring encloses
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the tolerance area for fixation. The gray discs represent the average calibrated
blind spot sizes and locations for each subject. Bold crosses represent the win-
sorized average saccade end locations over subjects of both inside and outside
blind spot trials (+- winsorized STD). Small crosses show the same metrics for
each individual subject. F) The design matrix used for the single subject GLMs.
An overparameterized model of four main effects (purple), constant, and all
interactions (green) were used.

either due to the screening procedure (n = 4, see below for cri-
teria); technical problems (n = 2); incompatibility of lenses with
the combination of shutter glasses and eye tracker (n = 2); or
perceptual problems in the peripheral field of view (n = 1).

4.4.3 Materials

EEG:

Electrophysiological data w ere recorded using 64 Ag/AgCl elec-
trodes with an equal-distance placement system (actiCap, Brain
Products GmbH, Germany). Scalp impedances were kept below
5 kOhm. EEG data were sampled with 1000 Hz, using Cz as a
recording reference, and the ground electrode was placed near
Fz.

Eyetracking:

A remote, infrared eye-tracking device (Eyelink 1000, SR Research
Ltd., Mississauga, Canada) with a 500 Hz sampling rate was used.
The average calibration error was kept below 0.5° with a maximal
calibration error below 1.0°. Trials with a fixation deviation of
more than 4.6° from the fixation point were aborted.
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Display:

We used a 24, 120Hz monitor (X1.2420t, BenQ, Taipeh, Taiwan)
with a resolution of 1920x1080 pixels in combination with consumer-
grade shutter glasses for monocular stimuli presentation (3D Vi-
sion, Nvidia, Santa Clara, USA, wired version). The shutter glasses
were evaluated for appropriate crosstalk/ghosting using a custom-
manufactured luminance sensor sampling at 20 kHz. The measured
crosstalk at full luminance was 3.94%.

Change Latency:

As the main analysis of EEG data was about signals related to
saccade-contingent changes, we needed to make sure that the
stimulus change always occurred during the saccades. The online
detection of a saccade by the eye-tracker took on average 27ms
(SD: 1ms, 5/95-percentile: [22ms 35ms]) from the movement start,
and the saccade duration was on average 60ms (SD: 4ms, 5/95-
percentile: [48ms 80ms]). An additional 8.75ms (max: 11ms)
delay occurred from the computer command to the actual stimulus
change on the monitor. The slowest detection of a saccade (35ms)
plus the maximum time it took to change the stimulus (11ms) was
faster then the shortest saccade (48ms). Thus, the stimulus was
always exchanged before the fixation onset. Reaction time from go
signals to saccade start was, on average, 248ms (SD: 20ms).

Stimuli:

Modified Gabor patches with a frequency of 0.89 cycles/° and
a diameter of 9.6° were generated. Two kinds of patterns were
used (Figure 1D): one completely continuous and one with a small
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perpendicular inset of 2.4°. For comparison, the blind spot typically
has a diameter of 4-5°. The Gabor had constant contrast in a radius
of 6.3° around the center. This ensured the same perception of the
continuous stimulus outside the blind spot compared to a filled-in
stimulus where the inner part is inside the blind spot. In order
to account for possible adaptation effects, horizontal and vertical
stimuli were used in a balanced and randomized way over trials.
Stimuli were displayed using the Psychophysics Toolbox (Brainard,
1997; Kleiner et al., 2007) and Eyelink Toolbox (Cornelissen et al.,
2002).

4.4.4 Experiments

Calibration of Blind Spot

In order to calibrate the blind spots, subjects were instructed to use
the keyboard to move a circular monocular probe on the monitor
and adjust the size and location to fill the blind spot with maximal
size. They were explicitly instructed to calibrate it as small as
necessary to preclude any residual flickering. The circular probe
flickered from dark gray to light gray in order to be more salient
than a probe with constant color (Awater, 2005). All stimuli were
presented centered at the respective calibrated blind spot location.
In total, each subject calibrated the blind spot 30 times over two
sessions. In line with previous studies (e.g., Wolf and Morandi
1962), the blind spots (left and right) were located horizontally
at -15.4° (SD: 0.6°) and 15.7° (SD: 0.6°) from the fixation cross.
The mean calibrated diameter was 4.9° (SD: 0.7°) for the left
and 5.0° (SD: 0.5°) for the right blind spot. Blind spots did not
significantly differ in size (p = 0.061, CI: [-0.3,0.0]) but they did
differ in absolute horizontal position (in relation to the fixation
cross) (p = 0.005, CI:[-0.5° -0.1°]) with the right blind spot, on
average, 0.3° further outside from the fixation cross. There was
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no difference in the vertical position (p = 0.87, CI: [-0.5° 0.3°]).
In summary, the properties of the subjects’ blind spots were fully
compatible with the previously reported values. One exception
is that subjects calibrated the left blind spot, compared to the
right one, closer to the fixation cross. Eye movements result in
EEG artifacts that differ according to their kinematics. Although
we used state-of-the-art procedures to remove this artifact (see
below), it is important to evaluate the systematic differences in
eye movement that could confound the analysis. The saccades did
not differ in amplitude for saccades to the left against saccades to
the right. There was a significant difference of amplitude between
saccades inside the blind spot and saccades outside the blind spot of
0.3° (SD: 0.1°, p=0.001, CI:[0.1°,0.4°]). However, this difference
was small compared to the overall average saccade amplitude of
13.9°, and the stimulus size of 9.6°.

Screening Procedure

The screening procedure was used to ensure a normal fill-in, ab-
sence of problems in the peripheral vision unbeknownst to the
subjects themselves, and the ability to sustain a high level of at-
tention. A single stimulus, either continuous or with an inset,
was monocularly presented in the periphery at the previously de-
termined blind-spot location (inside the blind spot, temporally)
or in the horizontally mirrored position (outside the blind spot,
nasally). Subjects indicated via button press whether they per-
ceived a stimulus without inset (left key) or a stimulus with inset
(right key) stimulus. A total of 48 trials per block were shown, and
they were fully balanced and randomized. We applied conserva-
tive criteria, requesting a 94% performance level in this simple
classification task. If an inset stimulus was presented inside the
blind spot and thereby eliciting fill-in, it was counted as a correct

4.4 Methods: Gaze-dependent stimulus changes and inferred stimuli

115



116

trial when subjects answered that they perceived the stimulus as
continuous.

Responses to saccade contingent changes outside and inside
BS Concurrent EEG and eye-tracking recordings were performed
allowing us to induce artificial mismatches between pre- and post-
saccadic stimuli and thus evaluate the differences in EEG responses
to saccade-contingent changes. At the start of the trial (Figure 1
A-C), the subjects were asked to fixate on a cross in the middle
of the screen. A Gabor stimulus, the pre-saccadic stimulus, was
presented monocularly either to the left or to the right eye and
either outside the blind spot (nasally) or inside the blind spot
(temporally). After an average of 525 ms (+ 225 ms), the fixation
cross disappeared, and the subjects had to perform a saccade to
the center of the stimulus. We called the second stimulus, now
in the center of the gaze, the post-saccadic stimulus. Two key
factors were evaluated during the experiment. The first factor
was Change. In order to induce a prediction error, we exchanged
the stimulus during the saccade in half of the trials. This change
was either from a stimulus with the inset present to one where
the inset is absent or vice versa. Saccades were detected online
when the gaze deviated more than 2.6° from the fixation cross.
Saccade-contingent changes occurred equally often for movements
to stimuli presented inside or outside the blind spot. The second
factor, Inset, related to whether subjects saw a stimulus with or
without an inset. Presenting the stimulus with an inset in the blind
spot elicits fill-in and thus is perceived as a continuous stimulus,
irrespective of the veridical physical stimulus properties. It is
therefore impossible to perceive an inset stimulus when the initial
pre-saccadic stimulus is presented in the blind spot; thus, we did
not record trials in such a condition. Moreover, an inset in the
later post-saccadic stimulus, when the previous periphery stimulus
was inside the blind spot, can only co-occur with a change. In
total, 2880 trials were displayed over two sessions with 10 blocks
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per session. Each condition was displayed in a fully balanced and
randomized way for each block.

4.4.5 Analysis

EEG Processing

Data were analyzed using MATLAB and EEGLAB (Delorme and
Makeig, 2004). Data were resampled to 500 Hz and bad chan-
nels, which we identified by visual inspection (never more than
one channel per subject) were excluded from further analysis and
interpolated at a later stage (after data epoching, see below) using
spherical interpolation. Signals were cleaned visually for coarse mo-
tor artifacts and signal drops. An independent-component analysis
(AMICA, standard parameters as implemented in BCILAB version
v12, Palmer et al., 2008) was applied on, only for this step, FIR
high-pass filtered data (1 Hz, -6 dB cutoff at 0.5 Hz, 1 Hz transi-
tion bandwidth, FIRFILT, EEGLAB plugin). ICs were automatically
screened for artifacts. For eye artifacts, we employed an automatic
reliable algorithm (Dimigen et al., 2011; Plochl et al., 2012) that
removed, on average, 7.5 eye-artifact ICs (SD: 2.5, [lo:4 hi:18])
per subject. For muscle-artifact ICs, we correlated the spectrum
of the ICs with a prototypical square-root spectrum commonly
observed in muscle artifacts. A correlation higher than 0.7 was
used to identify an IC as a muscle-artifact IC. We found, on aver-
age, 6.8 components per subject (2.3 [lo:0 hi:15]). All rejected
ICs were also visually validated by inspecting the topographies,
spectra and activation over time, and confirmed. Finally, EEG data
were low-pass filtered below 50 Hz (-6 dB cutoff at 56.25 Hz, 12.5
Hz transition bandwidth) using a FIR filter. Data were cut into
epochs of -300 ms to 500 ms with a baseline of -300 to -100 ms
and aligned to two different events: the onset of the pre-saccadic
stimulus and the start of the post-saccadic stimulus fixation. Trials
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were excluded from further analysis in three circumstances: sub-
jects made a saccade while they should have maintained fixation,
the saccade endpoint was not in an area of 10° around the center
of the stimulus, or the reaction time was greater than three times
the standard deviation above the mean for each subject. After
online fixation control and EEG cleaning, on average, 88% (4.9%,
[10:62.9% hi:96.5%) of the trials entered further analysis. The
complete eye-tracking and EEG datasets, and analysis scripts, are
available upon request.

Statistics

We used robust statistics wherever possible. Robust statistics are
more reliable in the case of small deviations from assumed distri-
butions than their classical statistical counterparts (Wilcox, 2012,
Chapter 1). If not stated otherwise, all reported descriptive values
are 20% winsorized mean followed by 20% winsorized standard
deviation in round brackets (Wilcox, 2012, Chapter 3.3) . When
winsorizing, the upper and lower 20% of samples are replaced by
the remaining most extreme values, and then the mean or standard
deviation is calculated. The influence of outliers is thereby strongly
attenuated. The median, arguably least affected by outliers, is
equal to the most extreme winsorized mean (threshold of 50%),
where all values, except the median value, are declared outliers’.
Ranges are reported by [lo:X hi:Y]. We evaluated one-sample tests
with the percentile bootstrap method of trimmed means (20%)
with alpha = 0.05 (Wilcox 2012, p.115-p.116). For paired two-
sample data, we used the same procedure on the difference scores.
We used bias-corrected, accelerated 95% bootstrapped confidence
intervals of the trimmed mean (20%) and reported them in the
text by (CI:[X Y]). All bootstrap tests and estimates were done
with 10.000 resamples, except for the EEG multiple-comparison
correction (TFCE) where we used only 1.000 resamples.
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Single Subject GLM

Using a MATLAB toolbox suitable for mass-univariate generalized
linear models (GLM; LIMO toolbox Pernet et al., 2011), GLMs
were fitted on each electrode and time-point separately for each
subject. The analysis of EEG data with GLMs, has previously
shown advantages in terms of higher sensitivity and unbiased data-
driven analysis (e.g. Rousselet et al., 2011; Dandekar, Privitera,
et al., 2012) and is a standard application of statistical parametric
mapping (Litvak et al., 2011). An overparameterized dummy
coding with interaction comparisons was used for the design matrix
(Figure 1F). The main factors used were stimulus Change, Blind
spot (outside/inside), Position (left/right), and Inset (with and
without). All possible interactions were modeled. The analyzed
estimable functions are linear combinations of the parameters of
the same experimental factor or interaction. For example, for
the main factor Position, the estimable function was 35 — /3;.We
tested this statistically using Yuen’s t-tests with corresponding HO-
centered bootstraps over subjects. For an interaction example,
Position CE Blind spot, the estimable function was (819 — 39)-(512 —
B11) and tested by a Yuen'’s t-test with corresponding HO-centered
bootstraps over subjects. For the pre-saccadic analysis, we did not
model the change factor, as the stimulus was not exchanged in that
time window of the analysis.

Group-Level Statistics

We used a standard threshold-free cluster enhancement (TFCE)
measure of local responses and permutation testing (SM Smith
and Nichols, 2009; C Pernet et al., 2015) to control the elevated
familywise error ratio of the multiple electrodes*timeframes tests
that were performed. In brief, TFCE bypasses the need to define an
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arbitrary threshold for sample clustering by establishing the local
support in space and time for every sample. This local support
is given by the sum of all sections in time and space that are
underneath itin other words, the sum of all samples that are not
beyond and higher than any local minima that is between them
and the sample under calculation. TFCE was calculated for the
actual mean factors and for 1,000 bootstraps of centered subjects.
For each of these bootstrapped samples of subjects, the maximum
TFCE value across all samples in time and space is used to construct
an H, distribution, against which the actual TFCE values were
compared. Values above the 95th percentile were considered to
be controlled for multiple comparisons at an alpha level of 0.05.
The neighborhood distance was calculated on the default electrode
locations. For a given model and data partition, the procedure
described above controls for the familywise error rate resulting
from fitting multiple GLMs to different electrodes and time points.
We report only effects that extended over five samples (10ms) or
more. Effect clusters of significant values were reported in the text
with their respective timing and median TFCE-corrected p-value

().

Shift of factor labels

Due to the nature of our factorial design, one can re-label the fac-
tors such that main effects and interactions are exchangeable. For
example, a main effect of change can be regarded as an interaction
between the presence of an inset before and after the saccade: An
inset stimulus before the saccade combined with a change results
in a no-inset stimulus after the saccade. Without the change, the
stimulus before and after the saccade is identical. This is true in
reverse for the no-inset stimulus before the saccade. We, indeed,
found a Change x Inset interaction effect (Figure 4B) even before
the saccade ended. We observed this pre-saccade-offset positive
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effect from -64 to 6 ms (positive betas: -64 to 6 ms, p = 0.019,
min-p = 0.004; negative betas: -60 to -34 ms, p = 0.045, min-p
= 0.03, and from -30 to 0 ms, p = 0.042, min-p = 0.035). This
seems puzzling at first, as the change of the stimuli occurred ap-
proximately 30 ms before the saccade offset, which is after this
observed interaction of Change x Inset. The effect before saccade
offset most probably resembles the main effect of the inset during
the pre-saccadic stimulus stimulation and can be explained by this
changing of factor-labels.

Incomplete Design

Due to the very nature of filling in at the blind spot, only an in-
complete factorial design is possible: an inset stimulus inside the
blind spot cannot be perceived. Therefore, we have to assume
that the three-way interaction containing the Blind spot factor, the
Change factor, and the factor Inset is negligible. We additionally
confirmed all results in two reduced subset models, each contain-
ing a full-factorial design. For the first full-factorial model, we
collapsed the change and inset factor in a combined factor and
selected only trials that were available both inside and outside the
blind spot. The second model excluded the factor Blind spot (and
all of the data with a stimulus inside the blind spot) but included
separate factors Change and Inset. This allowed us to confirm our
full-factorial model with the limitation of two independent error
terms for the two models, instead of one error term. All results
were confirmed in the fully balanced designs.
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4.5 Results: Early and late prediction
errors and an interaction with
inferred information

Fifteen subjects participated in a concurrent EEG and eye-
tracking experiment. They were asked to perform an eye move-
ment from the center of the screen onto a Gabor stimulus (Figure
1D) located in the periphery, in either the left or the right visual
field (Figure 1A-C). The position of the stimulus was centered at
either the left or right blind spot of each individual subject and the
diameter of the stimulus itself was larger than the blind spot by a
factor of approximately 2 (see Methods, Calibration of Blind Spot).
By using a 3-D monitor with shutter glasses, it was possible to
present the stimuli either in the blind spot or in the same location,
albeit in the nasal non-blind spot field of the other eye. Unin-
structed to the subjects, in half of the trials, the stimulus changed
during the saccade. Post experiment debriefing established that
all subjects became aware that the stimulus was sometimes ex-
changed. This consisted in a change of a small inset within the
center of the Gabor patch (smaller than the blind spot) from no
inset (a completely continuous stimulus) to the stimulus with an in-
set (during inside and outside blind spot trials) or vice versa (only
during outside blind spot trials). This experimental manipulation
allowed us to evaluate the presence of EEG responses compatible
with error signals to changes in a stimulus that are contingent
on subjects’ actions. We analyzed electrophysiological responses
that are produced after identical eye movements (Figure 1E) with
the same amplitude, direction, and target location (see Methods,
Calibration of Blind Spot) and that resulted in the foveation of
identical stimuli, albeit between trials in which the stimulus was
either changed or not changed during the eye movement. EEG
responses were analyzed with mass-univariate general linear mod-
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Fig. 4.2 Time-series plots of the EEG beta weights of the main factors or interactions for
each electrode are shown (butterfly plot), aligned to the onset of the pre-saccadic
stimulus. Blue marked latencies are significant under TFCE alpha of 0.05 and,
therefore, are corrected for multiple comparisons over time points and electrodes.
Black marked latencies are significant under additional Bonferroni correction
for the testing of multiple factors in a model. This second procedure is overly
conservative and only done to evaluate the robustness of the effects. The first row
of the topographical plots represents the mean beta weights averaged over 50 ms
bins. The second row depicts the minimal TFCE-corrected p-values over the same
bin. Black marked electrodes represent significant channels. The location of the
red highlighted channel is depicted in the first topographic plot. A) The main
effect Blind spot depicts the difference of a pre-saccadic stimulus presentation
inside and outside the blind spot, which is prominent 200 ms after stimulus
onset. B) The main effect of Position shows a contralateral processing in occipital
electrodes to a stimulus presented in the periphery. C) The Blind Spot CE Position
Interaction depicts a lateral component of the effect shown in A).
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els (CR Pernet et al., 2011) that were fitted to each electrode and
time-point for each subject. The main factors used were as follows:
stimulus Change (with/without), Blind spot (outside/inside), Posi-
tion (left/right saccade), and Inset (with/without) (Figure 1F). On
the group level, instead of a classical ERP analysis, we analyzed the
estimable contrasts of the parameter estimates from the general
linear model of the main factors and interactions. This corresponds
to a summary statistic approach to random effects analyses. The
reported values, termed beta values as a shorthand, are similar
to difference values of raw ERP, but importantly, they take into
account the variance of the other independent variables. We found
clusters of significant effects associated with the main effect of
interest, Change, at four distinctive latencies in the analysis of the
data after the saccade offset. The following results are organized
in three sections. First, we describe EEG effects of filling-in before
a saccade was done. Second, we illustrate the effects related to
late prediction signals post saccade. Finally, we describe early and
middle latency effect of post-saccadic predictive signals.

4.5.1 Inferred information in the periphery

A stimulus presented in the blind spot elicits filling in, in which
visual signals are inferred from surrounding information without a
direct input from the retina or the outside world. Neural activity
related to filling in has been described previously in areas V1 to
V3 in neurophysiological studies with primates (Fiorani Junior
et al., 1992; Komatsu et al., 2000; Matsumoto and Komatsu, 2005)
and in fMRI experiments with humans (Tong and SA Engel, 2001)
but not in human electrophysiology. We found that, prior to the
eye movement, after the onset of a peripheral stimulus, there is
a main effect for the Blind spot factor (Figure 2A) from 172 to
246 ms (positive betas: 172 to 244 ms, median p-Value p = 0.015,
min-p = 0.001; negative betas: 172 to 214 ms, p = 0.011, min-p
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= 0.002, and from 216 to 246 ms, p = 0.028, min-p = 0.011;
positive values represent a positive deviation from the average ERP
over all conditions and vice versa). As the pre-saccadic stimulation
was lateralized, we analyzed the main factor Position (Figure 2B)
and found two significant effects. The first occurred immediately
after the pre-saccadic stimulus onset from 70 to 114 (positive
betas: 70 to 114 ms, p = 0.015, min-p = 0.003; negative betas:
72 to 106 ms, p= 0.017, min-p = 0.005). As to be expected, a
stimulus in the right or left periphery elicits stronger activation
in the contralateral occipital electrodes. A second effect can be
seen from 362 to 408 (positive betas: 362 to 408 ms, p = 0.022,
min-p = 0.01; negative betas: 368 to 404 ms, p= 0.018, min-p =
0.004). Importantly, processing of the blind spot filling-in could be
lateralized as well. Therefore, we analyzed the interaction Blind
spot CE Position (Figure 2C) and found two significant positive
effects. The first was from 210 to 226 ms (p = 0.022, min-p =
0.003), and the second one was from 276 to 292 ms (p = 0.03,
min-p = 0.011). The first of the lateralized effects started and
ended during the main effect, whereas the second one started
about 30 ms after the main effect. The overall blind spot results
are in line with previous studies with intracranial recordings of V1
neurons that have receptive fields which include the blind spot,
and that show differences in activation after 100 ms (see Figure 9B
in Matsumoto and Komatsu, 2005) or after 200 ms (see Figure 9A
in Komatsu et al., 2000). These two effects shown here establish an
EEG correlate for the difference in visual processing of peripheral
stimuli when they are veridical (outside the blind spot) or inferred
(inside the blind spot).

4.5.2 Prediction signals over saccades

Our main goal was to find an EEG effect compatible with error
signals related to the prediction of specific visual content across
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Change is shown, comparing trials in which the stimulus remained the same, with
trials, where it changed during the saccade. The effect resembles a prediction
error in the form of a P3. B) The interaction Blind spot CE Change is shown.
This shows a reduction of the prediction error described in A). C) Correlation of
each subject effect-template with ERP data over 10 partitions of the experiment.
The red correlation shows that the main effect of change habituates over the
course of the experiment. The blue correlation shows no significant increase
or decrease for the Change CE Blind spot interaction and thus stays stationary
over the experiment. D) Raw ERP data of the interaction depicted in B). The
upper row depicts outside the blind spot data and the lower row depicts inside
the blind spot data. The difference of the change effect inside blind spot against
outside blind spot was tested using a bootstrapped Yuen’s t-test and corrected for
multiple comparisons using TFCE. The significant electrodes and time-points can
be seen as black dots. This confirms the reduction of the P3 inside the blind spot.
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eye movements. In contrast to the results described above, all
subsequent effects are for the post-saccadic stimulus. The violation
of a predictive signal that is independent of specific low-level visual
content (which would show in the interaction with Position or
Inset) can be investigated by the main effect of the Change factor.
Such a main effect was present from 248 to 498 ms after the end
of the saccade (positive betas: 248 to 498 ms, p = 0.001, min-p <
0.001; negative betas: 250 to 482 ms, p< 0.001, min-p < 0.001).
Taken together, the topographies and timing of these positive and
negative effects were compatible with a P3 ERP (Figure 3A). The P3
component is usually found after infrequent or unexpected events,
independently of sensory modality. Our data are therefore consis-
tent with a high-level prediction error, associated with a prediction
based on peripheral visual input and the subjects’ eye movement.
After establishing the presence of a signal compatible with post-
saccadic prediction error, we investigated whether this error signal
was different depending on whether the pre-saccadic visual input
was veridical (outside the blind spot) or inferred (filling-in inside
the blind spot). The Change x Blind spot interaction (Figure 3B)
was significant from 190 to 382 ms (negative betas: 190 to 382
ms, p= 0.007, min-p < 0.001; positive betas: 276 to 368 ms, p=
0.01, min-p < 0.001). In order to understand the direction of the
interaction effect, we additionally analyzed the raw ERP difference
between the conditions change and no-change, once inside and
outside the blind spot. To evaluate these data independently of
effects due to the inset, we subtracted the inset difference ERP
from the change conditions separately for trials inside and outside
the blind spot (Figure 3D). The resulting ERPs show how the inter-
action modifies the P3 component in two different ways. First, and
corresponding to the positive cluster of the interaction, there is a
reduction of the anterior part of the P3 when the previously periph-
eral stimulus was shown inside the blind spot compared with when
it was shown outside. This correspond to the P3a subcomponent,
which is associated with orienting responses due to the process-
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ing of unexpected, novel events (D Friedman et al., 2001; Polich,
2007). And second, corresponding to the negative cluster of the
interaction, there is an increase in the posterior part of the P3 for
blinds pot trials. This corresponds to the P3b subcomponent, which
has been associated to several different processes like changes in
episodic context (Donchin and Coles, 2010), the processing of
statistical surprise (Mars et al., 2008; Kolossa et al., 2013) and
the updating of perceptual evidence (O’Connell et al., 2012; Wyart
et al., 2012; Kelly and O’Connell, 2013; Cheadle et al., 2014).
In summary, this demonstrates that the brain treats violations of
predictions differently, depending on whether they are based on
external or inferred information. We controlled for non-stationarity
effects, such as those due to learning, by investigating the Change
CE Blind spot interaction over the course of the experiment. As
a comparison, we looked into a similar correlation but with the
main Change effect. The interaction is only estimable over multiple
trials, therefore, we used trial partitions of the Change CE Blind
spot interaction (the difference of differences) and the difference of
change and no change for the change main effect. We partitioned
the whole experiment into 10 parts and for each part calculated
the corresponding ERP difference. We used the interaction beta
weights (over time and electrodes) of each subject as a template
and correlated these 10 parts with the template resulting in 10
correlation values for each subject. (Figure 3C). For the Change
main effect, we observed a significant negative slope of correlation
values against trial partition order (winsorized mean slope: -0.012,
p = 0.001, bootstrap-CI: [-0.022 -0.005]). This indicates that the
P3 amplitude diminishes over time because subjects get used to
the experimental setting and become habituated to the saccade-
contingent change (Ravden and Polich, 1998; Ravden and Polich,
1999). However, the slope over trials for the Change CE Blind spot
interaction was not significantly different from zero (winsorized
mean slope: 0.002, p = 0.8, bootstrap-CI:[-0.009 0.012]). Hence,
subjects got used to the task and were less surprised by the saccade
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contingent change, but there was no habituation of the Change
CE Blind spot interaction, indicating that the modified error signal
for filled-in content was a stationary effect. Besides the Change
CE Blind spot interaction, we found one additional significant late
interaction between the factors Change and Inset (Figure 4B). The
interaction was significant from 334 ms to at least 500 ms (positive
betas: 342 to 436 ms, p= 0.016, min-p = 0.005 and from 440 to
>500 ms,p= 0.035, min-p = 0.019; negative betas: 334 to 428 ms,
p= 0.008, min-p = 0.004, from 434 to 468 ms, p= 0.036, min-p
= 0.013 and from 472 to >500 ms, p= 0.039, min-p = 0.026).
We interpreted this interaction as a consequence of the imbalance
in the experimental design (see Methods, Incomplete Design). We
showed more continuous than inset stimuli in the periphery (%
to %) due to the physical limitation, as an inset stimulus in the
blind spot is necessarily perceived as the stimulus without inset.
Due to this imbalance, a change from continuous to an inset stim-
ulus is twice as frequent as a change from inset to a continuous
stimulus. This less frequent change, the one to a continuous stim-
ulus, resulted in an increased response compatible with a higher
surprise.

4.5.3 Middle and early prediction signals

The main and interaction effects presented above emerge late
after the post-saccadic foveation of the stimulus and showed a
topography that is consistent with a known high-level associative
component. As such, those effects are unlikely to be related to
trans-saccadic prediction signals of specific low-level visual input.
We search for evidence for this kinds of predictions based on two
criteria: effect latency and interaction with low-level stimulus fea-
tures. Specifically, we would first expect that sensory error signals
would be different whether the change was from pre-saccadic no-
inset to post-saccadic inset stimuli or vice versa. And second, the
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Fig. 4.4 Data aligned to the saccade offset when the stimulus is foveated A) The Change
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CE Position interaction shows a clearly lateralized prediction error at around 200
ms. The two histograms insets depict saccade onset and stimulus change, and
show, that all changes occurred during the saccades. B) The Change CE Inset
interaction shows three separate effects. Detailed descriptions are found in the
results section. C) The Change CE Inset CE Position interaction shows an early
prediction error that is lateralized and also dependent on the low-level stimuli
properties.
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pre-saccadic position of the stimulus should also have an effect
due to the communication of prediction and error signals between
unilateral hemispheric areas and the bi-hemispheric central repre-
sentation of the post-saccadic foveal stimulus. The Change effect
had a lateralized component, which was dependent on the stimulus
location previous to the eye movement, even though the stimulus
was then fixated centrally: we observed a significant Change CE
Position interaction (Figure 4A) from 182 to 226 ms (positive betas:
182 to 226 ms, p= 0.009, min-p <0.001; negative betas: 192 to
212 ms, p= 0.029, min-p = 0.015, and from 216 to 226 ms, p=
0.039, min-p = 0.027). Even earlier effects were observed in an
interaction between Change and Inset factors and in the three-way
interaction Position CE Change CE Inset. The interaction Change CE
Inset (Figure 4B) was significant only for negative values, around
100 ms (90 to 126 ms, p= 0.03, min-p = 0.011). Lateralized
effects of this two-way interaction were found in the Position CE
Change CE Inset interaction (Figure 4C): we found a positive effect
from 108 to 154 ms (p = 0.03, min-p = 0.001) and a similar
effect, albeit negative, on the other hemisphere from 120 to 142
ms (p = 0.035, min-p = 0.006). Note that the interactions that
include the factor Position result in topographic effect similar to
the one observed for the pre-saccadic stimuli (Figure 2B), thus
suggesting that the processing of post-saccadic foveal stimulus in-
clude extensive crosstalk with the areas that represented it before a
movement was done. Altogether, these middle and early effects of
the interactions between saccadic-contingent change, pre-saccadic
position and low-level characteristics of the stimulus indicate the
production of error signals to low-level visual predictions.
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4.6 Discussion

We investigated the EEG correlates of prediction errors to
changes in visual stimulation occurring during an eye movement.
We found early ( 100 ms), middle ( 200 ms), and late ( 300 ms)
latency surprise responses to changed stimuli. These responses can
neither be explained exclusively in terms of remapping operations,
as movement vectors were equivalent across conditions, nor by
differences in the post-saccadic stimulus because we compared
responses to identical stimuli. Early and middle latency responses
were either lateralized and/or dependent on the Inset factor, sug-
gesting that their sources are processes specific to the visual sensory
domain. In contrast, the late latency response resembled a P3 ERP
component, thus suggesting it has a source in a high-order pro-
cess, possibly non-visual, that it is related to the occurrence of
an unexpected event. Such dissociation between perceptual and
associative predictions have been shown previously in human EEG,
with comparable methods, topographies and time courses, but in
the context of perceptual decision-making experiments (Wyart et
al., 2012; Cheadle et al., 2014). The late response we observed
was also present when the stimulus was located inside the blind
spot, but it was reduced in amplitude compared to a response
outside the blind spot. This modified response to a change in the
blind spot indicates knowledge of the unreliability of the filled-in
information, occurring only at a late stage of processing.

We observed early, middle, and late latency effects following a
change of the stimulus during a saccade. Both early and middle
effects are compatible with modality specific processes: they inter-
act with the side of the field in which the movement is directed
(early and middle component) and the orientation contrast of the
stimulus (early component only). Previously, sensory error signals
have been associated in EEG experiment with the mismatch nega-
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tivity potential (MMN), both in the auditory (Garrido, JM Kilner,
Stephan, et al., 2009) and visual domain (Stefanics et al., 2011).
In the visual domain, orientation mismatch, comparable to our
saccade-contingent change in orientation of the stimulus, result
in MMN with a temporal and topographic profile similar to the
early and middle latency change and change interactions seen here
(Astikainen et al., 2008). These early effects are, however, unlikely
to be related to processes occurring in the primary visual cortex.
At 100 ms, the first feedforward-feedback sweep in V1 has already
occurred (e.g. Hupé et al., 2000; Chen et al., 2007). Furthermore,
the C1 visual ERP component, which originates in V1 (Di Russo
et al., 2002), has a latency of 50-60 ms and peaks around 90 ms,
which is mostly prior to the effects seen here. The absence of a very
early error signal is in concordance with the current knowledge
of the extent of remapping in visual areas. Responses related to
remapping are present at high levels in the visual hierarchy and are
almost absent in the primary visual cortex (Nakamura and Colby,
2002; Merriam et al., 2007), making it less likely that predictions
related to eye movement reach this area. The prediction of foveal,
high-spatial frequency content in the primary visual cortex would
be, in any case, inefficient due to the limited spatial spectral res-
olution of peripheral information (e.g. SJ Anderson et al., 1991)
and the limited accuracy of eye movements (e.g. Weber and Daroff,
1971). This favors a more restricted role of predictive coding for
the primary visual cortex, in which only statistical regularities
about the world and the effect of low-level spatial context are
taken in account (e.g. Srinivasan et al., 1982; Rao and DH Ballard,
1999; Fiser et al., 2010), rather than an adaptive, all-encompassing
process that also predicts specific content at all cortical areas. Nev-
ertheless, the change-related effects starting at 100 and 200 ms are
likely due to other stages of low- and middle-level visual process-
ing. Previous studies that attempted to uncover error signals to an
unpredicted sensory input have been inconclusive regarding how
early, or how upstream, prediction signals are produced. In some
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studies, only late signals related to prediction errors were found.
For instance, in the modeling of mismatch negativity signals of au-
ditory stimuli, only the late evoked responses, P3-like here, can be
clearly attributed to inhibitory feedback prediction errors (Garrido,
JM Kilner, Kiebel, et al., 2007). Similarly, a time-frequency analysis
shows that high-frequency gamma differences, attributable to pre-
diction errors, start only late, after 200 ms (Todorovic et al., 2011),
which is the same latency for the effect that occurs in most ERP
repetition suppression experiments (reviewed in Grill-Spector et
al., 2006). In contrast, other experiments support early prediction
errors. Neuroimaging studies show activity pattern in primary vi-
sual cortex consistent with predictive signals for pattern adaptation
(Grill-Spector, Henson, et al., 2006; Summerfield, Trittschuh, et al.,
2008; Egner et al., 2010), apparent motion (Alink et al., 2010),
and 3D grouping (Murray et al., 2002). In electrophysiological
experiments, evidence for early predictions exist for the auditory
mismatch negativity effect (Wacongne et al., 2011), and in the case
of a reduction of EEG sensory responses due to self-stimulation
(Martikainen et al., 2005). In this last kind of experiment the
subjects trigger themselves the appearance of a standard stimulus
(Schafer and Marcus, 1973) through a motor action coupled artifi-
cially, by experimental design, with the appearance of the stimulus.
In the case of our experiment, the stimulus was always present,
and the subjects’ actions were directly related to the modality of
stimulation. The stimulus changed its retinotopic location and
resolution due to a shift of the visual field that follows over-learned
sensorimotor contingencies expected for any eye movement. The
absence of an early interaction between Change and Blind spot fac-
tors indicate that filled-in signals, which are inferred from neighbor
inputs, are processed by visual areas as if they were the result of
an actual input. Such interaction only emerges at a later stage in
the form of a modulation of both anterior and posterior subcompo-
nents of the P3. This supports the idea that the exclusively inferred
quality of the signals from the blind spot is not lost, and it is taken
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into account in higher-level associative areas. Even though most
of the research showing visual-related P3 components has been
done in conditions without eye movements, P3 responses have
been recently described in experiment that permit them (Dandekar,
Ding, et al., 2012; Kamienkowski et al., 2012; Kaunitz et al., 2014).
In contrast to these experiments, in which an infrequent item or a
search target produced the P3 component, here the P3 was elicited
by a movement-contingent stimulus change. Whereas the MMN
potential discussed above is related to low-level sensory processing,
the P3 is considered a correlate of a high-level error signal. For
instance, P3 responses seem to be a response associated to the
processing of global deviants in a stimulus or event succession
rather than to local deviants (Bekinschtein et al., 2009; Chennu
et al., 2013), thus depending on the episodic context rather than
in specific sensory features (Donchin and Coles, 2010). A formal
interpretation of the P3 is that it corresponds to the processing
of statistical surprise (Mars et al., 2008; Feldman and KJ Friston,
2010; Kolossa et al., 2013), and also, especially for the posterior
subcomponent, to the update of perceptual evidence (O’Connell
et al., 2012; Wyart et al., 2012; Kelly and O’Connell, 2013; Chea-
dle et al., 2014). The reduction of the anterior subcomponent
(peaking at 300 ms) in blind spot trials is consistent with predictive
coding simulations of attention (Feldman and KJ Friston, 2010).
In these simulations, top-down estimates of reliability (precision)
modulate the gain of prediction error units in lower regions of
the visual hierarchy. This gain modulation would correspond to
attention, where high-precision signals enjoy greater gain and the
P3 represents a revision of these precision estimates. Changes in
visual stimuli need to be associated with movements or transients
to be detected (Grimes, 1996; Henderson and Hollingworth, 2013).
Because this is prevented here by precise experimental timing, it
is safe to assume that saccade-contingent changes, even if task
irrelevant, are novel events that would result in a revision on the
reliability of estimates of stimulus or event constancy, at least in
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the local context of the experiment. However, in the case of in-
formation from the blind spot there is no such context that can
change the intrinsic unreliability of filled-in signals, thus result-
ing in a reduced revision of conditional expectations about the
stimulus being stationary. This means that an interpretation of
our findings is that we attend away (ignore) visual information
from the blind spot; thereby attenuating subsequent responses to
violated predictions, when resampling the visual scene.

A modulation of the posterior subcomponent of the P3 in blind
spot trials can be observed as well. In contrast to the modulation
of the anterior subcomponent, this difference is not fully consistent
with the temporal progression and topography of the change effect.
We consider two alternatives interpretations, not necessarily incom-
patible, of this posterior interaction. First, although the blind spot
region remains unreliable, our experimental design could result
in a revision, not of the precision estimates, but of the underlying
model of the causes of sensory input from this region, normally
inferred from the surrounding. In other words, in blind spot trials
there is a revision not only of the expectation about the stimulus
being stationary (albeit reduced in comparison to trials outside
the blind spot in which the veridical pre-saccadic stimulus has a
high reliability), but also of the filling-in model. The second inter-
pretation follows the results of EEG experiments about perceptual
decision-making (O’Connell et al., 2012; Wyart et al., 2012; Kelly
and O’Connell, 2013; Cheadle et al., 2014), in which a similar
posterior topography and time course to the one observed here is
seen for the updating of perceptual evidence, indicating that the
posterior cluster of the interaction could represent an updating
of the perceptual evidence about the contents of the blind spot
location. Crucially, these are updates of a decision signal instead
of a perceptual one, and thus in our experiment, even in absence
of an explicit task goal, would represent the accumulation of new
evidence against the filling-in percept being a reliable model of
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sensory input. There are two main conclusions of the present work.
First, the sensory consequences of eye movements are actively
predicted at multiple levels of the visual hierarchy. This occurs for
the prediction of the actual visual content that is present before
an eye movement, rather than only for the prediction of general
statistics of visual content. Second, the prediction of content that
is exclusively inferred differs between levels of the visual hierarchy.
Low-level sensory areas process the stimulus as if it originated from
an external input source. In contrast, in higher-level processing,
the filled-in (and therefore imprecise) nature of the blind-spot
information is taken into account. These results suggest that a
hierarchy of predictions does not operate in a strictly successive
way, in which prediction and errors necessarily propagate all the
way down and up, respectively; low- and high-level predictions of
the same content can be dissociated.
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5.1 Layman Summary

In the previous chapters we saw, that whenever we perform an
eye movement, we predict what the future percept will be. Moving
our eyes and predicting the future input takes effort. The brain
therefore developed efficient ways to select future points to move
the eyes to.

The brain juggles two decision processes at the same time:
when to stop collecting data from the current view and move the
eyes, and where to move the eyes to. Researching these decision
processes is difficult, because subjects decide in their own time
when and where to make eye movements to.

In this chapter, we present a new paradigm that allows us to
experimentally control both the where and when of eye movements,
but we focused mostly on the when. We showed small parts of a
stimulus to subjects, as if they were looking through a single hole
of a Swiss cheese. After a controlled fixation time, we exchanged
the hole and thereby forced subject to look at a different part of
the stimulus. Thereby, we control both the where and when of eye
movements and can examine the state of the decision processes.
We could show two main influences on the time to move the eye.
For one, the decision time depends on how much information was
already extracted. If subjects looked at a stimulus already in great
length, they are ready to move on earlier. Also, if we allowed eye
movements on more than one future location, subjects showed a
longer decision time to select between these options.
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5.2 Probing the temporal dynamics of
the exploration-exploitation dilemma
of eye movements

When scanning a visual scene we are in a constant decision
process regarding whether to further exploit the information con-
tent at the current fixation or to go on and explore the scene.
The balance of these two processes determines the distribution
of fixation durations. Using a gaze-contingent paradigm, we ex-
perimentally interrupt this process to probe its state. Here, we
developed a guided-viewing task where only a single 3° aperture of
an image ("bubble") is displayed. Subjects had to fixate the bubble
for an experimentally controlled time (forced fixation time). Then,
the previously fixated bubble disappeared, and one to five bubbles
emerged at different locations. The subjects freely selected one of
these by performing a saccade toward it. By repeating this proce-
dure, the subjects explored the image. We modeled the resulting
saccadic reaction times (choice times) from bubble offset to sac-
cade onset using a Bayesian linear mixed model. We observed an
exponential decay between the forced fixation time and the choice
time: Short fixation durations elicited longer choice times. In trials
with multiple bubbles, the choice time increased monotonically
with the number of possible future targets. Additionally, we only
found weak influences of the saccade amplitude, low-level stimulus
properties, and saccade angle on the choice times. The exponential
decay of the choice times suggests that the sampling and processing
of the current stimulus were exhausted for long fixation durations,
biasing toward faster exploration. This observation also shows that
the decision process took into account processing demands at the
current fixation location.

5.2 Abstract Ehinger 2018
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5.3 Introduction: Where and when to
look at things?

Decisions are a central aspect of cognition. Because the world
is noisy, evidence of the states of the world needs to be integrated
over time (Vickers, 1970). Indeed, physiological studies using
the random dot motion paradigm (Shadlen, Britten, et al., 1996;
Shadlen and Newsome, 2001; PL Smith and Ratcliff, 2004; Gold
and Shadlen, 2007) suggest such an evidence accumulation pro-
cess. Furthermore, several other decision processes comply with
such models. Examples are categorization (Heekeren, Marrett,
Bandettini, et al., 2004), eye movements (Leach and R Carpen-
ter, 2001), or self-initiated button presses (Schurger et al., 2012).
Most commonly, these decision processes are modeled by using a
biologically plausible drift-diffusion process (Ratcliff, 2001). The
properties and neurobiological mechanisms of decisions are clearly
a vast and active research field (Heekeren, Marrett, and Ungerlei-
der, 2008).

While scanning a scene with eye movements, we need to de-
cide when to move our eyes and what target to select for every
single saccade. This is arguably the decision with which we are
confronted the most often throughout our lives. Eye movements
result in significant changes in signals to the brain, and they in-
fluence our conscious perception. The obvious way in which they
influence our conscious perception is by changing the visual input,
but also, more subtly, by the decision about what part of an envi-
ronment to sample in the future (Kietzmann and Konig, 2015). A
much-investigated example of this decision process can be found
in the act of reading: To read this text, you continuously select the
target of the next saccade. Extensive data and models have been
published in this domain alone (Rayner, 1998; Rayner, TJ Smith,
et al., 2009). The decision of where to look next is, of course, not
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restricted to reading but occurs in all viewing behaviors, e.g., visual
search (Najemnik and Geisler, 2005) or free viewing. Eye move-
ments, i.e., the selection of the next fixation points, are evidently
prime examples of decision processes.

Two primary decision processes occur in parallel: One decides
when to look, the other where to look. A lot of work has been
invested in understanding the selection of the next fixation loca-
tion. Clearly, many different factors contribute to the decision of
where to look next (Kollmorgen et al., 2010; Konig et al., 2016).
Most notably, task-dependent factors (Buswell, 1935; Hayhoe and
D Ballard, 2005; Rothkopf et al., 2007), stimulus dependencies
(Einh&duser, Spain, et al., 2008; Foulsham and Underwood, 2008;
Foulsham and Underwood, 2009; Koehler et al., 2014), and ge-
ometric dependencies of the trajectory (Motter and Belky, 1998;
Hooge, Over, et al., 2005; Tatler, Baddeley, et al., 2006; Tatler
and Vincent, 2009; Henderson and TJ Smith, 2009; Kaspar and
Konig, 2011a) exist. For the future fixation location, some of these
factors have been summarized in the saliency model (Koch and
Ullman, 1985; Itti et al., 1998). In recent years, the performance of
saliency models has slowly converged to the inter-individual noise
ceiling. In other words, models based on features become as good
as predictions based on other subjects, and therefore, only inter-
individual differences remain to be explained (Wilming, Betz, et al.,
2011; Kiimmerer et al., 2015; Bylinskii et al., 2016). Furthermore,
the concept of a saliency map is not just a computational conve-
nience. Studies investigating neglect patients provide evidence for
the existence of a saliency map in humans are more recent addi-
tions (Ossanddn et al., 2012), presumably in the superior colliculus
(White et al., 2017). Most models estimate saliency based on low-
level stimulus properties, such as luminance, contrast, motion, or
edges. In addition, high-level object-related features, such as the
recall frequencies of objects in a scene, predict eye locations even
better (Einhduser, Spain, et al., 2008). In recent years, geometric
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dependencies on the trajectory have increasingly been included
in these models. Spatial bias (Tatler and Vincent, 2009), saccadic
momentum (Posner and Y Cohen, 1980; Wilming, Harst, et al.,
2013) and horizontal asymmetries (Ossandon et al., 2014) are
incorporated to not only predict average fixation locations, but to
model whole gaze paths (Schiitt et al., 2017). Taken together, quite
extensive literature and profound insights exist on the decision of
where to look next.

The "when" question, i.e., the decision to initiate a saccade to a
new target, determines the time available for the processing of the
visual information available at the current fixation. Investigating
this ongoing decision process solely based on the distribution of
fixation durations is difficult, as selecting a new saccade target and
extracting information from the current fixation are temporally
overlapping processes (Findlay and Walker, 1999; Henderson and
TJ Smith, 2009). Several clever paradigms have been established
to dissociate these two factors. In gaze-contingent paradigms, such
as scene onset delay or scene quality change paradigms, subjects
explore an image, and at a critical fixation, the image is temporarily
exchanged with a mask (Henderson and Pierce, 2008; Henderson
and TJ Smith, 2009), or visually altered (Henderson, Olejarczyk,
et al., 2014; Walshe and Nuthmann, 2014). These paradigms
show that these changes influence the fixation duration immedi-
ately. They support the direct control theory (Gould, 1973; Rayner,
1978) of fixation durations. The direct control theory states that
the processing difficulty should influence the fixation durations
and thus the information content of the current fixation. A lower
limit exists for how recent information can still influence the choice
of what saccade to perform. The double-step paradigm (Becker
and Jiirgens, 1979) allows for the establishment of a minimal time
of 80 ms when a saccade can still be reprogrammed (Findlay and
LR Harris, 1984) depending on other factors for example task con-
ditions (Walshe and Nuthmann, 2015). However, not all fixations
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are under direct control. Henderson and Pierce (2008) found a
different set of fixation durations where presumably the saccadic
program could not be stopped. However, explaining this second
set of fixation durations by a pure direct control theory might also
be possible (Pannasch et al., 2011). These findings have been
computationally modeled by using the CRISP model of fixation
durations (Nuthmann, TJ Smith, et al., 2010). CRISP consists of
three major components: A random timer that initiates saccade
programs, a two-stage saccade programming step, and a modula-
tion based on the current visual processing. Nuthmann et al. show
that with this model, they can model a wide range of paradigms,
including the mentioned scene onset delay paradigms (Nuthmann,
TJ Smith, et al., 2010; Nuthmann and Henderson, 2012). For un-
restricted eye movements, the literature is a bit sparser. The most
comprehensive study comes from Nuthmann (2017), where she
analyzed unrestricted eye movement data associated with multiple
tasks for relevant factors for fixation duration. In another recent
study, Einhauser and Nuthmann (2016) analyzed the interactions
of the "when" and "where" question in free viewing. In spite of this
progress, the available literature for the "when" question is lacking
compared with the literature for the "where" question concerning
eye movements.

The ongoing foveal processing during a fixation is an example
of an exploitation process. In contrast, the initiation of saccades
and thereby the inspection of the environment exemplifies an ex-
ploration process (Gameiro et al., 2017). These together establish
a dilemma, quite similar to the exploration-exploitation dilemma
commonly observed in other disciplines (Daw et al., 2006; JD Co-
hen et al., 2007; Berger-Tal et al., 2014): It is a dilemma because
at a given point in time, we can either exploit or explore, but not
both. We are in a continuous decision process between exploring
the image and exploiting the current view. It follows that the bal-
ance of these two processes determines whether we maintain the
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current gaze location or initiate a new saccade and consequently
the distribution of fixation durations. Compared with the tradi-
tional exploration-exploitation dilemma, knowledge gain continues
throughout fixation. However, the formulation of eye movements
as an exploration-exploitation dilemma places the focus on the
ongoing decision process. The distribution of fixation durations is
the main observable outcome of this dilemma.

In this paper, we investigate the exploration - exploitation
dilemma in a guided viewing paradigm. During free viewing (as
in unrestricted viewing), experimenters usually do not have di-
rect control over fixation durations. They can usually bias the
distribution but not control it. Of course, causal interpretations
require controlled experimental interventions. Therefore, the ideal
experimental conditions would allow us to control these factors
by discretizing the temporal and spatial aspects of eye viewing
behavior. Such a paradigm should allow one to precisely modulate
all parameters of interest, i.e., fixation duration, the number of
the possible next fixation targets, the saliency at the current and
next locations, and the geometric features of multiple saccades.
In this study, we made the first step toward such a paradigm. We
used guided viewing, where subjects saw only a small aperture of
a scene (a bubble) at a time at each fixation (Gosselin and Schyns,
2001; Kollmorgen et al., 2010). Following this, we exchanged the
current bubble by up to five different bubbles at other parts of the
underlying stimulus. The subjects then selected one of these bub-
bles via a saccade, and the unselected bubbles were removed. The
participants explored the image by repeating this process. At the
end of the trial, we used a memory task as a distractor task, but also
to compare the task performance to trials where the bubbles are
shown concurrently and not sequentially. The main benefit of this
new paradigm is that it allowed us to disentangle the processing
phase from the time to select a new fixation location.
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We were interested in three predictions that the paradigm al-
lowed us to test. First, it follows from the exploration-exploitation
dilemma that after sufficient exploitation and analysis of the cur-
rent view, the system will be ready to continue exploring the envi-
ronment. Exploitation will finish, or saturate eventually, because
information content of a single bubble is limited. If this process is
stopped early, resources needed to continue exploration will still be
used for exploitation and the readiness to perform a saccade should
be low. Our paradigm allowed us to probe the dilemma: The dis-
play time of the fixated bubble was experimentally controlled. With
a short display time, the visual system is still in the exploitation
phase, and subsequent eye movements should be generated more
slowly. Vice versa, with a long display time, the visual system is
ready to, literally, move on, and saccades should be elicited more
quickly.

Second, we tested whether saccade planning can be naively thought
of as multiple evidence accumulators that race independently to
a fixed threshold. The first to reach the threshold decided the
time and place of the saccade. Multiple potential targets, and thus
multiple accumulators, should result in a shorter delay to elicit a
saccade. In our paradigm, we tested this by introducing an addi-
tional experimental manipulation: Instead of using the classical
guided viewing paradigm, which operates with a single future
target location, we allowed subjects to decide between multiple
locations.

Third, we investigated how far these processes depend on the ac-
tual information being analyzed. We, therefore, used noise and
urban images with low and respectively high information content.
A reasonable assumption is that urban images contain more in-
formation that needs to be exploited. Thus choice times should
generally be longer.

Summarizing, we hypothesized that longer forced fixation
times on the current bubble lead to a shorter time to elicit a saccade
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to the next target. Furthermore, we expected a decrease in the
time needed to elicit a saccade with the number of possible future
targets. Finally, we hypothesized that the choice time is positively
correlated with the processing demand at the current fixation
location.
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5.4 Methods: A new gaze-dependent
paradigm to control the where and
when of eye movements

5.4.1 Subjects

In the primary study, 35 subjects participated (18-42 years,
mean age: 24 years, eight male, three left handed, 14 left dominant
eye). In a second experiment (an internal replication and a context
experiment), we recorded 10 additional subjects (18-22 years,
mean age: 19.5 years, one male, one left handed, one left dominant

eye).

In the first experiment, we excluded five subjects. Four ses-
sions had to stop early on the subjects’ request; one other subject
did not reliably look at the bubbles. In the second experiment,
three subjects were excluded from further analysis. One subject
stopped early, and two other subjects had excessive errors in eye
tracker calibration and drift corrections. Each subject provided
written informed consent. The ethics committee of Osnabriick
University approved the experiment.

5.4.2 Apparatus and Recording

We used a 24" LCD monitor (Benq XL2420T) with a screen
resolution of 1920x1080 pixels and a refresh rate of 120 Hz for
presentation purposes. The participants viewed the screen from
a distance of 80 cm. The participant’s left eye movements were
tracked at 500 Hz by using an EyeLink II system (SR Research Ltd.,
Mississauga, Ontario, Canada). We used a 13-point calibration
with a mean validation error of <0.5° and a maximal validation
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error of <1°. Furthermore, we performed a drift correction before
each trial.

5.4.3 Procedure

In every trial, the subjects explored a given image using small
apertures, inspired by the bubble technique (Gosselin and Schyns,
2001): Subjects performed a drift correction and an additional
subsequent fixation on a cross-shaped fixation point for 300-700 ms.
Then, a trial followed with the display of one random single bubble
(a sub-trial) visible for an experimentally specified time (forced
fixation time) (Figure 5.1A). In this first sub-trial, we always used
a single bubble. After the forced fixation time, the initial single
bubble display was replaced with one to five new bubbles (one
bubble in 51.6%, two in 25.8%, three in 12.9%, four in 6.5%, and
five in 3.2% of fixations). This staggering was used to ensure a
higher signal-to-noise ratio for the single bubbles, allowing a more
certain estimation of the main effect of forced fixation time at cost
of estimating the number of bubbles effect or possible interactions
thereof. Out of a pool of precomputed bubbles, we randomly
selected a set of new bubbles (choice bubbles), with a linear bias
toward bubbles close to the current one. Thus, this procedure gave
preference to bubbles that were closer to the currently displayed
bubble. The subjects chose one of the new bubbles by performing a
saccade toward it. The time needed to initiate the new saccade was
termed the choice time and was our primary dependent variable.
We used the phrase choice time instead of saccadic reaction time,
as several bubbles offered a choice for the subject to make. Thus,
the choice time included the time to select the new target as well
as the time to initiate a saccade. During this choice time period,
the current bubble was switched off; only the future bubbles were
visible. After the saccade to the new target, this new target was
displayed for the next forced fixation time. Concurrently with the
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Fig. 5.1 A) Experimental Procedure. Subjects foveate a single bubble for the forced
fixation time. It is sampled from an exponential distribution with a mean of
300 ms to ensure a flat hazard function. The next step removes the bubble and
simultaneously displays one to five new bubbles (in this example three). The
dependent variable is the time until a saccade is initiated. After the selection
of one bubble, and most often before the saccade ends, the other bubbles are
removed. The newly foveated stimulus is shown for a newly sampled forced
fixation time. B) Example stimuli urban and pink noise. C) The sampling points
for bubbles following the pseudo-random Poisson disc sampling algorithm. D) A
single bubble as seen by the subject.

saccade detection, the other, non-chosen bubbles were removed
from display. As subjects could in principle saccade to a distant
bubble passing over bubbles in between, we used an algorithm
based on the last three samples to estimate the saccade velocity.
After the detection of a saccade, defined by a velocity of greater
than 30°/s, we checked for the closest bubble only after the velocity
was lower than 50°/s again. These parameters resulted in the best
time-delay/ spatial accuracy tradeoff. In the analyzed data, we
observed that the other choice bubbles were removed in the online
algorithm after on average 11 ms (90% range of -4 ms to 23 ms)
after the end of the saccades as the eye tracker detected offline.
Please note that minimizing this time was no easy feat, as the eye
tracker had a delay of 5 ms to deliver the sample. The monitor
took an additional 5 ms to switch to 95% target luminance, and
with 120 Hz, we had (on average) 4 ms (+-4 ms) for the vertical
retrace to start again. We think that an average delay of 11 ms
to turn off the non-chosen peripheral stimuli is negligible. In any
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case, a slower reaction time had an influence only on when the
other bubbles were turned off. The selected bubble was constantly
displayed until its forced fixation time expired. For the analysis,
we used the forced fixation time starting at the end of the saccade
as the eye tracker detected offline.

The distribution of forced fixation times followed an exponen-
tial function with a mean of 295 ms, which resulted in a constant
hazard function. Thus, at any point in time of the trial, the proba-
bility that a new bubble would appear was held constant. Conse-
quently, subjects could not anticipate when the currently fixated
bubble would disappear and a saccade was necessary.

The subjects saw parts of the image at two times. One was
the forced fixation time, when the time subjects foveated a single
bubble. The second was the choice time after the forced fixation
time when the subjects saw only stimuli in the periphery, and the
foveated bubble was removed. The first, the summed-up display
time over all fixated bubbles, was on average 6.1 s (95% quantile:
[6.0s, 6.2s]) and was similar to the free viewing conditions used in
other experiments. Thus, depending on the forced fixation times in
one trial, subjects were presented on average 19.3 bubbles (95%
quantile: [11, 26], SD of 4.5). The second part, i.e., when stimuli
were visible only in the periphery (the summed-up choice times),
took on average 3.2 s (95% quantile: [2.7s, 3.9s]). Taking the
first part together with the second, we obtained an average of
9.3 s (95% quantile: [8.9s, 10.0s]) during which subjects saw the
content of the stimuli.

5.4.4 Stimuli

Each subject completed 128 trials in total. 96 trials consisted of
the guided viewing bubble paradigm; the other 32 trials belonged
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to a static image condition with a different research question in
mind. In this static condition bubbles were not shown subse-
quently. They were shown simultaneously instead and subjects
were allowed to explore the bubbled-stimulus at their own pace
(these trials are discussed further in the results section under "2
AFC Memory-Task"). If not explicitly stated otherwise, we only dis-
cuss data of the 96 trials with the guided viewing bubble paradigm.
In half of all trials, we used grayscale urban images (1280*960px).
These were photographs of Ziirich city and surrounding cities and
had been used in several previous studies (Wilming, Betz, et al.,
2011). In the other half, we used grayscale pink noise images
with the same luminance distribution as the urban images (SHINE-
Toolbox, Willenbockel et al., 2010). The bubbles (Figure 5.1 B-D)
were Gaussian patches with a diameter of 3°, acting as apertures on
the underlying image (Kollmorgen et al., 2010). Within each bub-
ble, a fovea filter (Loschky et al., 2005) and a Gaussian filter were
applied to imitate the visual acuity of the human eye and smooth
the transition to the background. The fovea filter ensured that all
information of a bubble could be extracted with a single fixation at
the center. That is, there was no information gained by exploring a
bubble by repeated saccades to different locations within it. A Pois-
son disk sampling algorithm placed bubbles pseudo-randomly on
each image with a minimum distance constraint (Bridson, 2007).
The minimum distance of two bubble centers was set to the bubble
radius. Thus, the maximal area overlap of two bubbles was smaller
than 15%. In contrast to a random placement from a uniform dis-
tribution, this algorithm avoided clusters or holes during sampling
(Figure 5.1C). Successive bubbles were enforced to be without any
overlap. We used on average 101 bubble locations (range 91-109)
on each image.

Subjects were instructed to look at the center of the bubbles.
The distribution of the distance of fixations to the bubble center
(Figure 5.2A) shows that subjects fixated closely to the center. The
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Kernel density of distance to bubble center. Blue/Dotted: first fixation, red/solid:
first re-fixation, green/dashed: theoretic distribution based on the Gaussian
bubble mask

dashed green line (Figure 5.2B) shows the density of distances
when sampling from the Gaussian visibility mask. The distance
to zero reflects that if one draws two samples (x and y) from a
Gaussian, it is unlikely that both of them will be close to zero.
Refixations (red) lead to a distribution that supersedes this density
(Figure 5.2B). From that, we conclude that subjects targeted the
center of the bubbles and performed corrective saccades (see also
Kollmorgen et al., 2010 for similar results).

5.4.5 2-AFC memory Task

After each trial, the participants performed a 2-AFC memory
task. We presented two bubbles simultaneously next to each other.
One was chosen randomly from the pool of possible bubbles in the
previously displayed image but was not necessarily shown during
the trial. The other bubble was chosen randomly from any another
image. The participants indicated via a button press which of the
two bubbles could have been part of the image they saw. There
was no time limit. The aim of the task was twofold: to ensure that
subjects processed the image content in some depth and to use it
as a motivation and distractor task.
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5.4.6 Data Analysis

Data Preprocessing

We based our analysis on the premise that subjects fixated on the
displayed bubbles (n = 67454). Thus, we removed all sub-trials
where they did not fixate on the bubble, where the saccade de-
tection algorithm failed, or where the calibration was not good
enough to directly detect which bubble was fixated on. We ex-
cluded sub-trials, with a fixation outside of the currently displayed
bubble during the forced fixation time (n=11390, 16% of total)
and where there was no direct saccade to the next bubble but an
intermediate one in-between bubbles (n=22613, 33% of total).
Further, we excluded sub-trials, where the planned forced fixation
time was different from the observed forced fixation time by an
arbitrary threshold of more than 40ms (n=6147, 9% of total).
Such a discrepancy could arise when the online saccade-detection
algorithm detected the saccade earlier or later than the more so-
phisticated offline saccade detection. We used the observed forced
fixation time in all analyses, which is the actual time in which
the subjects saw the stimulus. In total, we removed 30185 sub-
trials. Thus, all in all, 55.3% sub-trials remained (mean per subject
1062.3, range 806-1283). Sub-trials with more than one fixation
inside the currently displayed bubble (25.2% of the remaining
bubbles) were kept in the analysis. A reanalysis of choice times of
sub-trials with only a single fixation did not change the results.

In order to remove extensive outliers that would strongly
influence our analysis, we used an outlier detection algorithm
(Leys et al., 2013) based on three times the median deviation
(MAD) distance from the median for each subject (with a constant
factor of 1.4826 included; thus, it defaults back to ¢ in the normal
case). This procedure removed an additional 5.6% of the sub-
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trials and is below the 10-15% recommended criterion (Ratcliff,
1993).

Linear Mixed Model

Fixation durations and, in our case, choice times are dependent
on a multitude of factors. These can be categorical (e.g., the type
of scene, urban against noise), or in our study most often con-
tinuous (e.g., the amplitude of the previous saccade, the angle
between saccades, or, in our case, the forced fixation time). Either
a repeated measures ANOVA or a linear mixed model could ac-
count for the repeated measures of subjects. However, a repeated
measures ANOVA does not allow for continuous factors. Thus, we
choose a Bayesian linear mixed model with uniform priors on all
parameters.

The first set of predictors describes our main experimental
manipulations. Two of the predictors are of primary interest in
this study: The forced fixation time and the number of bubbles.
The interaction between these two factors indicates a possible
dependency between the underlying processes. In addition, we
model the categorical stimulus type, urban images, against noise
stimuli.

The second set of effects is correlative in nature and relates to
the spatial relation of the fixated bubble to the bubble fixated on
in the previous and next sub-trial. As we did not experimentally
influence saccade trajectory, for example, by enforcing a fixed
trajectory of bubbles, these spatial effects are correlative predictors
and do not allow conclusions on causal relations. The angle in
absolute monitor coordinates is a circular predictor. In order to
model this dependency, we used a Fourier decomposition with one
and two periods for the 360° of the predictors (thus, four predictors

Chapter 5 Action and Sampling



in total, including two sines and two cosines). We modeled this
effect once from the previous to the current bubble and once from
the current to the next bubble. Also, we used the difference of the
angles between the previous and the current bubble and the angle
between the current and the next bubble. We also included the
distances of the bubbles. To account for a central spatial bias, we
included the standardized z-transformed x- and y-position and the
squared, z-transformed x- and y-position of the bubbles in order to
account for a quadratic decay toward the edges of the image, which
is usually observed with spatial biases. Also, we model a term to
describe the distance of a bubble to the center of the screen.

The third set of predictors incorporated temporal dependen-
cies and sequential influences between the trials and bubble pre-
sentations. We used trial number, previous forced fixation time,
and previous choice time as predictors.

Bayesian Model Fit

We analyzed the data using hierarchical logistic mixed effects mod-
els fitted by the No-U-Turn-Sampler in STAN (Homan and Gelman,
2014; B Carpenter et al., 2017). For the model specification, we
followed the implementation by Sorensen (Sorensen et al., 2016).
In maximum likelihood linear modeling terms, all within-subject
effects were modeled using random slopes clustered in subject and
a random-intercept for subject. We estimate all covariances be-
tween the random effects with an LKJ-Prior (v=2), which slightly
emphasizes the diagonal over the off-diagonal. We used treat-
ment coding for all categorical factors and interpret the coefficients
accordingly.

We used six MCMC-chains with 1000 iterations each, with
50% of the iterations used for the warmup period. We visually con-
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firmed convergence through autocorrelation functions and trace
plots. Furthermore, we calculated the scale reduction factors (Gel-
man, Carlin, et al., 2013) and ensured the recommended criterion
for convergence (Rhat < 1.1). To control for an adequate model fit,
we calculated 1000 posterior predictive draws and plotted the me-
dian and 95th percentile together with the raw data. The posterior
predictions matched the data well, and the model seems to be ade-
quate for our inferences. When displaying the data and posterior
predictions in their quantile ranges, the posterior predictive checks
showed that our model did not capture all features of the data but
merely the central tendency. We find a mismatch in the 2.5% quan-
tile and 97.5% quantile. There, the raw data have higher choice
times than the posterior predictive. This results from the skewed
distribution of choice times on the subject level (Figure 5.3). But,
most importantly, the posterior predictive median and mean value
fit the data appropriately.

Reported Statistics

For Bayesian posterior predictive checks, we report 95% cred-
ible intervals (CI) using the Cousineau correction for grouped
data (Cousineau, 2005). For posterior parameter estimates, we
report 95% posterior CI. For other reported data, we use 95% bias-
corrected and accelerated bootstrapped confidence intervals of the
mean with Cousineau correction for grouped data where applica-
ble (Cousineau, 2005). Cousineau correction adjusts confidence
intervals of repeated or grouped estimates by first subtracting the
total average of each subject before calculating the variance.
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Software

Experimental software was written in PyGame (http://pygame.org).
We processed data in MatLab (The MathWorks, Inc., Natick, Mas-
sachusetts, United States), Python (http://python.org), and R (R
Core Team, 2013). We acknowledge the use of other packages
used to analyze the data (Wickham, 2007; Wickham, 2015; Bates,
2010; Walt et al., 2011; Carr et al., 2015; Pinheiro et al., 2016).
All experimental scripts, analysis scripts, and data are publically
available under http://osf.io/ba2pn.
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5.5 Results: Longer exploitation time
and less available options result in
shorter decision time

In this study, we use a new paradigm to break down the free
viewing paradigm into controlled subprocesses. While several ex-
perimental paradigms exist to experimentally manipulate fixation
durations, here, we directly control them using forced fixation peri-
ods. Furthermore, we control the participants’ saccade trajectories
with the use of small bubble-like stimuli that act as an aperture on
the underlying image. These bubble stimuli allow us to guide the
participants in their exploration.

Thirty-five subjects viewed 96 images each (plus 32 images
intermixed with other trials, see Results 2AFC-Task for a descrip-
tion), and we analyze 35105 fixations based on the guided viewing
paradigm. The mean of the median choice time, that is, the du-
ration until subjects initiated the next saccade, was 156.7 ms (95
percentile range: [123.1 ms, 210.3 ms], Figure 5.3). As expected
for fixation durations and reaction times, our choice time distribu-
tions are skewed toward the right tail. We used a Bayesian linear
mixed model to explain the variations of the choice time. The units
of the linear model parameters were chosen to be intuitive and
to facilitate comparison between the effect sizes. We either used
the average values of the predictors (246 ms based on the average
fixation duration in parts of a big free viewing data set (Wilming,
Onat, et al., 2017)) or maximal values (the total number of trials,
96 from this experiment plus 32 intermixed ones, resulting in 128
trials and 19 bubbles per trial average). We additionally grouped
the predictors into three distinct classes: Experimental factors,
correlative factors, and sequential effects. Experimental factors are
controlled, randomized, and balanced. Correlative factors were
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Fig. 5.4 Linear mixed model parameter estimates and Bayesian 95% posterior credibility
intervals. We state the parameters in intuitive units (third column) to aid inter-
pretation. A 'max’ depicts the highest observed value of this factors, and ’avg’ the
average of independent data (Wilming, Onat, et al., 2017).
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analyzed based on the subjects’ behavior. The sequential effects
capture possible influences due to previous trials. We present the
posterior marginal density results in Figure 5.4.

5.5.1 Forced Fixation Time

Our first prediction relates to the exploration-exploitation
dilemma: Sampling the decision process early after fixation onset
should result in longer reaction times than eliciting a new saccade
after prolonged initial fixation. All subjects show an exponential
decline in the choice time (Figure 5.5AB). For short forced fixation
times below 100 ms, we observe choice times of around 175 ms.
In contrast, in the case of long forced fixation times, choice times
saturate around 150 ms. This compressive nonlinearity has an in-
stantaneous rate of growth of -34.0 [-38.3, -29.6] (95% credibility
interval, see Methods) times the forced fixation time normalized
by an average fixation duration in free viewing images of 246 ms.
We find an additional linear effect of forced fixation time with a
slope of 0.7 [-0.1, 1.5]. This effect is small (a change of 0.7 ms in
246 ms, or a 3ms change in 1000 ms) and the parameter estimate
contains 0. Therefore, we do not discuss the linear part of the
forced fixation time effect further. Descriptively, we observe an
increase in the choice times for forced fixation times larger than 1s
(not shown). Due to the exponentially distributed forced fixation
times, on average, only 2.4% of the forced fixation times are larger
than 1s. Therefore, we do not feel confident in making estimates
for values larger than 1s, which are unlikely to influence the model
estimates. From the mixed model results, it is clear that the forced
fixation time increases the reaction time: the longer the current
fixation lasted the faster subjects responded.
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Fig. 5.5 Main effect of forced fixation time. Subjects viewed the bubbles for an exper-
imentally controlled time, depicted on the abscissa. We record the time until
they choose to perform a saccade to the next bubble on the ordinate. A) blue:
data with bootstrapped 95% confidence interval of the mean using Cousineau
correction. Red: posterior predictive distribution with 95% credibility interval. B)
Single subject kernel density estimates of the data.

5.5.2 Number of Bubbles

The second experimental manipulation is the number of bub-
bles. After fixating a stimulus for the forced fixation time, the
stimulus disappeared and one to five bubbles emerged in the pe-
riphery. The subjects then decided on one and performed a saccade
onto it. The other bubbles then disappeared before fixation onset.
Here, we observed a monotonic logarithmical increase of the choice
time from one to five bubbles (Figure 5.6), with an effect size of
25.1 ms [21.0, 29.2] over five bubbles. While the logarithmical
effect captured the data well, a categorical or piecewise-linear
component (e.g. one bubble is unique, 2 to 5 bubbles are linear)
seemed to capture the data equally well. Theoretic considerations
for a possibly higher number of bubbles in future experiments
make the logarithm the most reasonable choice with the best gen-
eralization. It is evident from the data that there is a monotonic
increase in the choice time: the more bubbles that are available for
a decision, the longer it takes for one to choose a bubble.
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effect number of bubbles, blue: data with bootstrapped 95% confidence interval
of the mean using Cousineau correction, red: posterior predictive distribution
with 95% credibility interval. B) Distributions for individual subjects. Each
subject showed an increase over the number of bubbles.

5.5.3 Interaction of Forced Fixation Time and
Number of Bubbles

Next, we analyze the interaction between the forced fixation
time and the number of bubbles (Figure 5.7) on the choice time.
Here we find an interaction between the number of bubbles and
the forced fixation time of -14.7 [-19.0, -10.5]. In Figure 5.7, we
smoothed the display to get a more intuitive understanding of this
relationship. An example to understand the effect size for this
log-log interaction is helpful. The predicted difference between a
forced fixation time of 100 ms and 1000 ms for a single bubble
is 14.7 ms; for five bubbles, it is 20.0 ms. Thus, in this case,
the interaction boosts the single bubble forced fixation effect by
40%. We acknowledge the small absolute effect size. Nevertheless,
the credibility interval for this effect is far removed from 0. The
interaction shows that the effects of the forced fixation and the
number of bubbles on the choice time are dependent on each other:
The more bubbles are available to choose from, the larger the effect
of the current forced fixation time.
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Fig. 5.7 A) The main effects of the number of bubbles (columns) and the forced fixation
time (abscissa). The upper row depicts raw data with 95% bootstrapped mean
with Cousineau correction and the lower row depicts the posterior predictive
with 95% Cousineau credibility intervals,. B) We show the interaction between
the forced fixation time and the number of bubbles. The data from A, lower row,
were further smoothed for this plot (generalized additive model with thin plate
regression splines). And the mean of each curve was removed. This eliminates
the main effect of the number of bubbles. A sharper decline results in trials with
many bubbles to choose from compared to trials with a low number of bubbles.

5.5.4 Image Category

The last experimental effect is the image category. The bubbles
of one trial were drawn from urban images in half of the trials and
pink-noise images in the other half of the trials. We observed a
main effect of 4.3 ms [3.1 ms, 5.5 ms], which means urban bubbles
have a longer choice time than noise bubbles. This main effect
is surprisingly small, given the vast differences in image statistics
between the two categories.

5.5.5 Geometric Effects

We observed various correlative effects (Figure 5.8). These
effects were not experimentally controlled or balanced and thus
are correlative in nature. The first effect is the angle between
the currently fixated bubble and the next bubble (Figure 5.8A,
inset). We modeled this effect using four parameters describing
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the sine and cosine of the base and two times the base frequency.
This procedure allowed us to capture the dynamics of the circular
nature of this effect (Figure 5.8A). The shape of the marginal
effect display follows a smooth sinusoidal curve: Reaction times
of saccades toward the upper part of the screen seem to be faster
than toward the lower part of the display. But if we look at the
model estimate, the maximal average difference (the amplitude),
and thus the effect sizes of this summed curve, is only 0.9 ms [0.4
ms, 1.5 ms]. The mismatch between the marginal display and the
parameter effect size is due to other predictors explaining a large
share of the variance of the effect. We observed a similarly small
effect of the angle between the previously fixated bubble and the
currently fixated bubble on the decision process at the currently
fixated bubble. Here the maximal difference over angles is 0.7
ms [0.3 ms, 1.1 ms]. This effect follows a double-u shape, with
increased choice times for vertical saccades and faster choice times
for horizontal saccades.

The difference between the two angles is shown in Figure 5.8B
and is commonly referred to as saccadic momentum. In line with
other research (Wilming, Harst, et al., 2013), return saccades
appear slower than forward saccades, but in our study, this is visible
only in the marginal plot. Taking into account other factors, the
effect disappears. Whereas in free viewing Wilming et al observed
effect sizes of around 45 ms, here we did not see a reliable effect,
with on average 0.4 ms [-0.9 ms, 1.7 ms] for the maximal difference
of 0° to 180° (see Discussion). The logarithmic distance to the next
bubble (Figure 5.8 C) predicted the choice time with a maximal
effect size of 2.6 ms [0.0 ms, 5.3 ms] between a theoretical saccade
of 0.2° and the maximum of 30°. Similarly; it is unlikely that there
exists an effect of the distance to the last bubble, with an estimate
of -1.3 ms [-3.3 ms, 0.9 ms] for the maximal range. Next, we
discuss the predictors for the absolute position of fixation. Without
these predictors, the aforementioned nonsignificant effects all were
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significant (although small, model results not shown here). We
modeled the absolute position of the chosen (thus future) bubble
using a linear and a quadratic term to capture the symmetric and
quadratic nature of this spatial bias. The horizontal position had a
linear influence of -3 ms [-4.6 ms, -1.5 ms] for the maximal range.
The vertical position had a bigger effect of -8 ms [-10.0 ms, -5.9
ms] for the maximal range (which in absolute measures is smaller
than the horizontal position). We also observed quadratic effects
for the horizontal position of -7.8 ms [-12.8 ms, -2.9 ms] and for
the vertical position of -9.0 ms [-12.5 ms, -5.7 ms]. In addition to
the absolute position, we also observed a linear distance-to-center
effect of -5.1 ms [-8.0 ms, -1.8 ms]. These effects indicate a quicker
reaction time the farther away from the center one’s eyes rest.

5.5.6 Sequential Effects

The last effects we modeled are sequential effects: trial num-
ber, bubble number, previous choice time, and previous forced
fixation time. The trial number influenced the choice time by 2.9
ms [0.9 ms, 4.8 ms] throughout the 128 trials of the experiment
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related to the memory task. B) On average, 19 bubbles were shown in a single
trial; this effect depicts a very small increase of reaction time during one trial.
This concludes the correlative effects. Compared to the experimental effects, the
effect sizes are very small.

(Figure 5.9A). The bubble number describes the n-th bubble a
subject saw in each trial. It had, on average, an influence of 2.5 ms
[1.5 ms, 3.5 ms] (Figure 5.9B) throughout one image, i.e., on aver-
age over 19 bubbles. The previous choice time had an influence of
-1.9 ms [-3.0 ms, -0.8 ms] for an average fixation time of 246 ms.
The previous forced fixation time did not seem to influence (0.01
ms [-0.2 ms, 0.3 ms]) the current choice time. All these effects are
considered small.

5.5.7 2-AFC Memory Task

Subjects performed a 2-AFC task after completing the sequence
of bubbles based on one image. They viewed one bubble taken
from the previously shown image (but not necessarily a bubble
shown during the previous trial) and another from a different
image. The most informative difference happens when two urban
bubbles need to be differentiated. Here we can see whether there
is a difference in performance between this sequential task and
the additionally recorded static condition. For two noise stimuli,
performance was 52.7% (C'ly5 49.7% - 56.0%, SD: 9.4%), as to be
expected at chance level. For trials with one noise bubble and one
urban bubble, performance was close to perfect, with 97.4% (C'Ig;
95.8% - 98.2%, SD: 3.3%). For trials wherein two urban bubbles
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were compared in the memory task, subjects showed an average
performance of 72.8% (C'lg; 69.0% - 76.0%, SD: 10.6%).

This static image condition was recorded in addition to the
regular trials interleaved in the same session. In this condition, a
bubbled version of the image was visible, which consisted of 21
non-overlapping bubbles. The number was slightly higher than the
on average 19 bubbles in the current study. The image was visible
for 6 s, a similar time to the total viewing time in the regular trials.
16 noise and 16 urban images were shown intermixed with the
sequential trials. Here we see very similar results: For two noise
stimuli, performance was 53.6% ( C'Ig5 47.9% - 60.6%, SD: 18.4%).
For trials with one noise bubble and one urban bubble, performance
was at 96.5% (ClIgs 93.8% - 98.1%, SD: 6.2%). For trials with two
urban images, performance was at 75.6% (Clg; 70.7% - 80.6%,
SD: 15.1%). The confidence intervals for the sequential and static
trials are largely overlapping. It is reasonable to conclude that
performances in the two tasks do not differ and changing a static
information uptake to a dynamic one does not introduce strong
artefacts in the processing of information. Second Experiment:
Internal Replication and Context In light of the recent replication
crisis in the (cognitive) psychological sciences subjects (Pashler
and E Wagenmakers, 2012; Aarts et al., 2015), we strived to
internally replicate our findings on an independent set of subjects.
In addition, we were interested in what way context shown at the
beginning of a trial influenced the choice times and integration
performance. We performed a second experiment (n = 10) where
we briefly flashed the entire scene for 92 ms (11 displayed frames
at 120 Hz) at the beginning of half of the trials. Similar to the first
experiment, subjects performed a drift correction before fixating on
a fixation cross for 300-700ms. After, the whole scene was flashed
for 92ms and then the experiment started with the first bubble
(always a single bubble) at a location around the fixation spot (we
used the same algorithm as in the first experiment, see Methods:
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Procedure). This allowed subjects to extract the gist of the scene
(gist condition) but did not allow making any saccades. It has
been shown that at around 100 ms, subjects already extract the
main features of a scene (Potter, 1976), even when the image was
masked, which we did not do here. In the other half of the trials,
the experiment remained identical to the original experiment to
allow for within-subject comparisons. The two types of trials were
randomly intermixed.

As can be seen in Figure 5.10, we replicated all effects we
found in the first experiment. In addition, we did not observe
an interaction with the gist of a scene in any of the factors. In
the 2-AFC memory task, subjects performed at very similar levels:
The case of two noise stimuli was not different from chance level
(50.3%, Clyooto5: 44.5% - 59.3%). One noise and one urban bub-
ble resulted in near perfect performance (98.3%, CIpoot95: 97.1% -
99.2%). And we found the same results as in the previous experi-
ment. When subjects had to choose between two urban bubbles,
there was no improvement in either gist condition (no-gist: 78.8%,
Clyooros: 70.4% - 84.2%, and with-gist 70.5%, Clyoores: 55% -
79.0%). Nevertheless, the second experiment replicates all of our
choice time results in a new cohort of subjects. Furthermore, briefly
presenting the gist of a scene did not influence either the choice
times or performance in the memory task.
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Fig. 5.10 The upmost interval of each posterior predictive triplet depicts parameter esti-
mates when subjects did not see the gist of a scene (bright color). The middle
interval (dark color) shows parameter estimates when the gist was shown for 92
ms before exploration started (n = 10, paired). The lowest interval (gray) depicts
the parameter estimate shown in Figure 5.4 (different subjects, n = 35), wherein
the gist was not seen either. Showing the gist does not induce any relevant
difference in the within-subjects comparison or in comparison with the cohort of
the previous experiment.

5.5 Results: Forced Fixation and Number of Bubbles 171



172

5.6 Discussion

5.6.1 Summary

The distribution of fixation durations can be described by an
exploration-exploitation decision process. Here, we used a guided
viewing paradigm to control the decision processes occurring dur-
ing a fixation and dissociated it from the processing of the fixated
location. We found an exponential decrease of the time needed
to choose the next fixation target dependent on the time avail-
able for processing the stimulus at the current fixation location.
This dependence provides evidence for the exploration-exploitation
dilemma in the decision process. Secondly, we found a monotonic
increase in choice time with the number of available saccade loca-
tions. These data indicate that potential future saccade targets are
accumulating evidence in their favor in a dependent manner.

5.6.2 Exploration-Exploitation

Our first main result directly tested the exploration - exploita-
tion idea: We described eye movements as an ongoing decision pro-
cess between further exploitation of the current view and further
exploration of new, unseen elements. In this study, we interrupted
the subjects during the exploitation stage of the current bubble at
unpredictable points in time and investigated the influence on the
choice time. From the literature, we expected saccadic planning
times to be between 100 and 175 ms (Rayner, 1998; JD Schall and
KG Thompson, 1999), which is in line with the present observation
of 150 ms. Please note that the choice time was measured from
stimulus offset. It was not measured from the previous saccade
offset, as at that time, no targets for further saccades were avail-
able. Thus, the intersaccade time amounts to an average of 450
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ms. In principle, the choice time (starting with stimulus offset
and target onset) could be constant and independent of the forced
fixation time, ending with stimulus offset and target onset. Instead,
we observed an exponential relationship of the choice time and
the forced fixation time. This demonstrates that the choice time
is dependent on the degree of processing at the current fixation
location and gives support for the exploration-exploitation view.

5.6.3 Are There Alternative Explanations for the
Exponential Decay?

In simple reaction-time experiments, Drazin (1961) observed
an exponential decay when the foreperiod, the period between
warning signal and go signal, was increased. This mimics our
forced fixation effect and could be an alternative explanation. As
discussed in Niemi and Nédatidnen (1981) and more recently using
saccades (Oswal et al., 2007), the important factor influencing this
effect is the predictability of the stimulus. The hazard function,
the instantaneous probability that a foreperiod/forced fixation is
ending, is essential here. With a nonuniform hazard function, as in
Drazin, subjects can predict with higher certainty when a stimulus
is going to appear, whereas when a nonpredictable, flat hazard rate
is used (Mowbray, 1964; Baumeister and Joubert, 1969; Oswal
et al., 2007), no effect of foreperiod on the resulting reaction time
can be found. We used a uniform, thus unpredictable, hazard
function. Therefore we think it is unlikely that our effect can be
explained by predictability effects of reaction time. There are two
limitations when comparing our study to previous studies. First,
the foreperiods in previous studies are usually much longer (in
the range of seconds). Second, all previous studies had a fixed,
constant foreperiod. Our constant foreperiod, the saccade duration,
is effectively very small. We do not think that these limitations can
explain the exponential decay. A different potential confound is
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based on refixation strategies. It is possible that the instruction to
look at the center of the bubble initiated a refixation program at
each fixation. This could result in prolonged choice times for short
forced fixation times. This prolongation should be linear with a
slope of -1 ms choice time per 1 ms forced fixation time. Because
we observe an exponential decay in our data, we think that this

confound cannot capture our results.

5.6.4 Related Paradigms

A paradigm that has a very similar procedure to the current
study is the mask-onset delay paradigm (Rayner, TJ Smith, et
al., 2009; Glaholt et al., 2012). Their goal was to measure the
minimal time viewers need to see a scene at each fixation in order
to obtain normal viewing behavior. In order to test that, Glaholt et
al. masked the stimulus after a given time (50 ms, 75 ms, and 100
ms). This stops any further incoming information. Either the whole
stimulus (Rayner, TJ Smith, et al., 2009; Glaholt et al., 2012) or
a circular part around the current fixation was masked (Glaholt
et al., 2012). In addition, Glaholt et al. (2012) also controlled for
the sudden onset of the mask which could elicit saccadic inhibition.
They measured the time until subjects started the next fixation.
They found that in the full-scramble condition, subjects elicited
similar saccades and reached the same performance as in free
viewing only at 100ms viewing time in either of their tasks. Our
results indicate that even more time is needed (at least 400 ms)
until the effect of forced fixation time saturates for all fixations. We
speculate that the information content of the momentary view and
the task (Glaholt et al., 2012) are crucial factors here. For example,
in an reading experiment, Rayner et al (Rayner, W Inhoff, et al.,
1981) conclude that only 50-60 ms of visible stimulus is needed
for fixation behavior to be indistinguishable from unrestricted
information access. Another important factor may be local vs
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global masking. In Glaholt et al. (2012), scrambling only the local
mask reduced this effect. Here, 50ms was enough to extract the
information to solve either task. It seems possible, though, that
this task could have been solved without foveal information and
only using peripheral information alone as proposed by Nuthmann
(2014). Glaholt et al. (2012) also found a bimodal distribution
of fixation durations, which they explain by a saccadic inhibition
mechanisms due to the rapid onset of the stimulus mask. Saccadic
inhibition (Reingold and Stampe, 2002) is a delay of saccade
production that the onset of a (possibly irrelevant) stimulus has.
Its most salient feature is a bimodal distribution in the fixation
durations; shortly after the inhibitory stimulus fewer saccades are
generated. In our case we did not observe this bimodality in the
choice times (Figure 5.3) or when adding the forced fixation times
to the choice times (not shown). Thus, saccadic inhibition cannot
explain our results.

Another phenomenon related to the one reported here could
be seen in the stimulus onset delay paradigm (Vaughan and Graefe,
1977; Vaughan, 1982). In this paradigm, subjects searched for
a target at two fixation points. At each fixation there was a vari-
able stimulus onset delay, replacing the fixation point either with
a target or with a distractor. The time to elicit the next saccade
can be seen mirrored in our choice time. Similarly, the stimulus
onset delay is mirrored in the forced fixation time. If the stimulus
was shown with a delay of 300 ms after onset, Vaughan found
decreasing response times by 100-150 ms compared to immediate
display. Thus, the delay speeds up the response time to the ap-
pearing stimulus. Vaughan (1982) discusses a possible explanation
based on predictability, similarily to the foreperiod effect discussed
above. It is likely that the crucial difference between the two tasks
is that in our paradigm the stimulus is directly visible at fixation
onset, then subsequently vanishes and the new target appears.
Whereas in the stimulus onset task, the stimulus is not visible upon
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fixation onset but becomes visible after the forced non-stimulation
period. We conclude that due to the very different effect sizes
(30ms in our study against 150ms), the difference in task and
the unpredictable foreperiod in our study, it seems unlikely that
the effect observed due to the stimulus onset delay is related to
the exploration-exploitation effect we investigate in the present
study.

5.6.5 Evidence Accumulation With Multiple
Targets

Our second prediction relates to the evidence accumulation
between multiple targets. We assumed one independent evidence
accumulator for each target that race to a fixed threshold. The
first to reach the threshold is selected. Our observed monotonic
increase with the number of future target locations is incompat-
ible with this explanation. This result is compatible with data
and evidence accumulator models from Leach and R Carpenter
(2001). To reconcile these data with such an evidence accumulator
model, interactions between the integrators of different locations
are necessary. This might occur through different thresholds for
multiple future locations as can be found in monkey LIP neurons
that decreased drift rates through lateral inhibition due to limi-
tations in sampling capacities (R Carpenter and Williams, 1995;
Leach and R Carpenter, 2001; Churchland et al., 2008) or more
complex interactions with time-varying thresholds (Ludwig, 2009).
A future analysis step with this paradigm is to fit drift-diffusion
models taking into account the effects described here.

Van den Berg introduced two processes that are decisive for
the duration of a fixation, one starting a new saccade and one
staying at the current fixation. This is made explicit in visual
search (Beintema et al., 2005; Berg and Loon, 2005). In their

Chapter 5 Action and Sampling



model, both processes are explicitly modeled as two dependent
integrators racing to individual thresholds that decide whether to
continue exploiting the current view or go on and explore the scene.
In visual search experiments, it seems as though the processing
of the peripheral stimulus is secondary to the processing difficulty
at fixation (Hooge and Erkelens, 1999; Wu and Kowler, 2013).
The conclusion from these studies is that in visual search subjects
do not bias fixation durations for better target selection, but only
for discrimination of the target at hand. This is not to say that
the peripheral information is ignored; it is still used for target
selection, it just shows a weak influence on the fixation durations.
It seems that the subsequent integration of foveal and peripheral
information can occur independently (Ludwig et al., 2014), but not
always so (VanRullen et al., 2004; Berg and Loon, 2005). Contrary
to our initial prediction, we found only a very small effect of foveal
processing in our experiment: a 4 ms difference between urban
and pink noise images. On the other hand, the peripheral decision
task showed a difference of up to 25 ms depending on the number
of bubbles. Thus, in our experiment, it seems we have a reverse
relation to observations in visual search (Hooge and Erkelens,
1999). Of course the task and general structure of the experiment
are quite different. In Hooge et al., the target is available for as
long as the subjects prefer, whereas in our study we forcefully
interrupt the information extraction process. These results show
how strong task dependency can influence the interaction and
integration of peripheral and foveal information.

We observed a logarithmic increase between the number of
possible targets and reaction times, which is similar to the "Hick’s"-
effect (Hick, 1952; Proctor and Schneider, 2017). But there is also
evidence that saccades do not follow this rule: the "anti-Hicks"
effect (Lawrence et al., 2008; Lawrence, 2010). This anti-Hicks
effect is commonly observed when there are multiple possible tar-
get locations to choose from. These authors differentiate between
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exogenous (e.g., prosaccades) and endogenous (e.g., antisaccades),
where an anti-Hicks effect can be found in the former but not the
later. We cannot replicate this finding here. It is well possible
that selecting between multiple possible targets is an intrinsic task
and our results are in agreement with earlier findings. We think
there are two additional important differences: One is that subjects
in our study could not predict how many bubbles would appear
compared to a blocked design in Lawrence. A second difference is
that in our study there is no correct stimulus, whereas in Lawrence
there was always one correct target. We could reconcile this by a
new experiment with a modified version of our paradigm present-
ing multiple bubbles but highlighting one as a target. In this case,
an anti-Hicks effect could be observed.

A functional explanation can be seen by the "cost of a saccade"
(see discussion in De Vries et al., 2016) Based on their ideas in
the discussion section, a saccade has two consequences in our
paradigm. For the duration of the saccade, saccadic inhibition
suppresses information processing. In addition, in the case of
multiple bubbles, a saccade also removes peripheral information
that could have been further exploited, would the pre-saccadic
fixation duration (the choice time) have been prolonged. Thus,
longer choice times for trials with many bubbles would allow
for longer exploitation of the peripheral content. It cannot be
disentangled by this study alone whether longer choice times for
more targets are based on a more difficult decision process or a
more detailed peripheral information extraction of the stimuli, or
both.

From our finding of a monotonic increase followed a new
prediction for free-viewing paradigms. In free viewing, some parts
of an image are preferably gazed upon. This can be quantified
by empirical saliency, usually measured by the density maps of
fixations over multiple observers. It has been recently shown
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that locations with higher saliency have higher fixation durations
(Einh&user and Nuthmann, 2016). Given our findings and what has
been found about the interaction of saliency and fixation durations,
we predicted prolonged fixation durations if an image has multiple
distinct peaks of empirical salience against other locations without
these distinct peaks. The peaks in saliency mimic multiple bubbles
as shown in our study.

5.6.6 Why are there no stimulus content
dependencies?

Contrary to our prediction, we found only a small effect of
bubble content on the choice time. We think that this effect is
due to chance and does not reflect a real effect. We imagine
two explanations of why the effect could not be observed. It is
possible, that there is truly no dependency between the information
extraction process and the forced fixation effect. The effect then
reflects a content-independent property of the system, in a sense a
hardwired, probabilistic solution to the exploration/exploitation
dilemma. Alternatively the time required to analyze pink noise
and urban images may be comparable. This would be in line
with high fixation durations during free viewing of pink noise
stimuli (Kaspar and Konig, 2011b). Similar rates should lead
to similar choice time distributions. Further comparisons with
other stimuli, or modifications of bubble-saliency, could be used to
understand this better. Computational Models of Fixation Duration
Models of fixation durations were proposed in the reading literature
(Reichle et al., 1998; Engbert et al., 2005). In recent years, fixation
duration models for free viewing and visual search have emerged
as well; for example, the CRISP (Nuthmann, TJ Smith, et al., 2010)
and ICAT (Trukenbrod and Engbert, 2014) models. In these two
models, fixation durations are modeled by two main components,
a stochastic random walk for the timing of saccades and one for the
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saccade generation. For the saccade generation part the authors
used either a random draw from a gamma distribution (CRISP) or
another stochastic random walk (ICAT). Our data could be used
to test specific model assumptions made by CRISP and ICAT, in
particular the ones relating to saccade generation.

Instead of truly generative models of fixation durations, as
in the models described above, a simplified model using drift-
diffusion modeling could be used. The LATER model (R Carpenter
and Williams, 1995) is a popular race-to-threshold model for (sac-
cadic) reaction times (Noorani and RH Carpenter, 2016) and has
recently been applied to explain both fixation durations and loca-
tions (Tatler, Brockmole, et al., 2017) in scene viewing. Similar to
the previous, more advanced models, LATER does not only model
the average choice times, but the whole distribution. Differences
between experimental manipulations could be caused, or be hid-
den in the shape of the response distributions (for a Bayesian
hierarchical solution based on Weibull-functions see Rouder et al.,
2005) and not captured by the central tendency measurement. The
discrete notion of exploitation (fixation on a stimulus) and explo-
ration (which stimulus to select) can help differentiate between
drift rates of saccade initiation and saccade generation.

5.6.7 Comparison of Other Factors to Free
Viewing

Many dependencies of fixation duration are described in the
literature and consequently modeled in our study. Comparing our
results to the literature, it is obvious that our observed effects are
drastically smaller, sand sometimes not existent. One example is
the absolute angle of a saccade: saccades from the center to above
the horizon are generally observed to be faster than saccades below
it (for an overview see Greene et al., 2014). For example Heywood
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and Churcher (1980)) reported an effect of 31 ms and Tzelepi et al.
(2005) reported 27 ms. Our effect is estimated to be around 0.8 ms
and thus does not exist in practical terms. Another example is the
amplitude of the previous saccade, which has been described in a
search paradigm by (Salthouse and Ellis, 1980) with 90 ms for 15°.
In our study, we found only 2.6 ms. A third example is an angle
to the previous fixation, termed saccadic momentum or inhibition
of return (Dorris et al., 1999; AJ Anderson et al., 2008; Wilming,
Harst, et al., 2013), which has been found to influence fixation
duration with a piecewise linear relationship by approximately
70 ms per 180° (Wilming, Harst, et al., 2013). In our study we
did not find evidence for such an effect. Note that some effects
do increase in size when not taking into account shared variance
with other predictors. This is evident from the mismatch between
effect size and marginal data as plotted in the figures. Still, even
interpreting the marginal effects, the same qualitative judgment of
smaller effects than in free viewing persists.

Some of the relationships described in the literature seem to
be task dependent. For example, in a recent study (Nuthmann,
2017) a saccadic momentum effect could only be found for mem-
orization and aesthetic preference but only very weak during a
search task. This could partially explain the mismatch of our ef-
fect sizes. Yet another factor is that in our paradigm, peripheral
information is restricted and the controlled fixation duration might
have a strong influence on the oculomotor system to show the
same effects that can be seen in unrestricted viewing (Nuthmann,
2014). We propose a third, nonexclusive explanation: in our study,
we separate the processing of the current input from the planning
and execution of the next saccade. Also, our observed choice times
are quite fast. In free viewing, these two processes occur in par-
allel. Thus, saccadic planning can start quite early in the current
fixation. Consequently, in free viewing more time is available for
other processes to intervene and modify either the duration of the
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exploitation phase or the planning of the next saccade. To test
whether the exploitation phase is modified in free viewing by these
geometric factors, we propose a modification to our experiment:
instead of hiding the currently exploited bubble and stopping the
exploitation process, we ought to keep it together with the new
target bubbles. Thus, exploitation can continue and is partially
under the subjects control, and we expected to see effect sizes of
similar size found in free viewing.

5.6.8 Comparison to Nuthmann (2017)

In a recent study by Nuthmann (2017), a complementary ap-
proach to this study was used. She analyzed fixation durations
from free viewing with three different tasks using linear mixed
models. Of course, the paradigm differs in many ways. Nuthmann
used unrestricted free viewing with different tasks, but we used
the combination of the bubble and guided-viewing paradigm, a
restricted viewing task. Nuthmann focused on the influence of
stimulus features on the fixation durations, we merely analyzed
the difference between background images based on pink noise
against urban images as our focus laid on the direct control of
fixation durations. Both studies analyzed oculomotor effects but
have a slightly different set of predictors. In this study, we addi-
tionally included the absolute angle and the absolute position of
the fixation. In general, Nuthmann found very strong oculomotor
effects over all tasks, with some exceptions. For example, Nuth-
mann observed strong saccadic momentum in two tasks, but much
weaker momentum in the visual search task. After controlling for
other oculomotor effects, the initially observed distance-to-center
effect of Nuthmann vanished. This was not the case in our study.
We found an effect of distance to center even though modeling
very similar other oculomotor predictors. Building upon the work
of Nuthmann on feature influences, our paradigm could be used
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to directly check her image feature based findings on a causal
level: one can modify the low-level features of certain bubbles.
For example, in a new experiment one can experimentally modify
the "clutteredness" of certain bubbles and then expect a modified
choice time.

5.6.9 Alternative Statistical Models, and Model
Critique

We analyzed the choice times using a Bayesian linear mixed
model. Linear mixed models (Bates, Machler, et al., 2014) and
other hierarchical models (Gelman and Hill, 2007) are steadily
replacing the need to use traditional ANOVA/ANCOVA (Bagiella et
al., 2000; Quené and Van Den Bergh, 2004; Richter, 2006; Baayen
and Milin, 2010; Kliegl et al., 2010; Nuthmann, 2017). On the
other hand, statistical recommendations for applied mixed models
are still being developed (Barr et al., 2013; Bates, Kliegl, et al.,
2015) and sometimes puzzling results can be observed (Hodges,
2014). One common problem is that maximum likelihood estimates
fail to converge, mostly due to the complexity of the covariance
matrix between random effects (Barr et al., 2013; Bates, Kliegl, et
al., 2015). Due to the high number of predictors our model is prone
to this problem. Therefore, we used a Bayesian version of the mixed
model (Sorensen et al., 2016) that allows us to put a small prior
on the covariance matrix that de-emphasizes correlations between
random slopes. This allowed us to fit the complex model and
interpret the maximal instead of a reduced (possibly parsimonious)
mixed model. In the case sufficient evidence from the data for a
nonzero correlation exists, this will overrule this weak prior. This
contrasts with forcing correlations to be zero as commonly done in
more parsimonious models. It is currently up for debate whether it
is possible to use those parsimonious models while still preserving
correct type-1 error rates (Bates, Kliegl, et al., 2015; Matuschek
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et al., 2015). Often only Bayesian mixed models allow estimating
all random slopes in the mixed model to achieve a full statistical
coverage when the model is sufficiently complex. Without all
random slopes, posteriors, standard errors, or confidence intervals
being too narrow, resulting p values are too small, type-1 errors are
too high, and thus the effect estimates are too liberal (Schielzeth
and Forstmeier, 2009; Barr et al., 2013; Sorensen et al., 2016).
After the model fit, we used posterior predictive model checks to see
whether the model adequately captures the data. As expected from
a Gaussian fit of skewed data, the model checks revealed that we
adequately fitted the mean of the distributions, but failed to model
the tails appropriately. A possible enhancement for future analysis
is to model the choice times using skewed normal, lognormal, or
mixed normal distribution to reflect the most extreme quantiles.

5.6.10 The Bubbled Guided-Viewing Paradigm
as a Research Tool

We introduced a new paradigm to investigate fixation dura-
tions in free viewing. There are some benefits over current free
viewing paradigms, but also shortcomings. One problem with this
paradigm is that we do not have a satisfying explanation of why
the geometrical correlative effects are so much smaller than in free
viewing. This could be a potential problem in studying any geo-
metric effect with this paradigm. It might be that using a less naive
forced fixation duration distribution could alleviate this problem.
Second, due to strict criteria, we had to remove ~45% of the data.
The biggest factor was intermediate fixations between two bubbles.
Further analysis is needed to determine whether better online fixa-
tion detection algorithms or higher accuracy can improve upon this.
On the other hand, the benefits are quite clear: we have a direct
window to the decision-making mechanisms during free viewing.
It controls the time a stimulus is available, how many and where
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the next stimuli are displayed, and thus, gives valuable variance
estimates to constrain computational models. The paradigm is eas-
ily expandable to other spatial sampling mechanisms. In this case,
we used a Gaussian distance measure, but it is straightforward
to relate the geometrics of exploration to real free-viewing scan
paths of subjects recorded beforehand. An alternative could be the
use of empirical saliency maps that mean sampling the points as
bubbles that are most likely fixated by other subjects. In addition,
it is not clear how the number-of-bubbles effect generalizes to
more bubbles, but there are two likely candidates: an asymptotic
behavior or an inverse cubic function. Summarizing the benefits,
we can state that we have a new tool to experimentally probe the
explorationexploitation state of the system that allows for close
control and is flexible in its sampling scheme.

5.6.11 Conclusions

Here we developed a new paradigm that allows for experimen-
tal control over fixation durations and exploration behavior. We
observed that we could selectively interrupt exploitation behavior
and confirm predictions from the explorationexploitation idea. In
addition, we show a monotonic increase of choice time with the
number of future targets.
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6.1 Layman Summary

Two things are very useful in order to understand a complex
system: 1) Direct control over all of its parts, and 2) a non-black-
box model of the system explaining and predicting its future behav-
ior. Both things are difficult to obtain for the brain. It is very hard
to directly control which brain areas or neurons are active and it
is also difficult to develop cognitive models of behavior. In this
chapter, I will approach this issue by developing analysis methods
based on a smaller and less complex neuronal system than the
whole brain at once.

To tackle the first problem of direct control, optogenetic meth-
ods have been heavily developed in recent years. Optogenetic
proteins allow direct activation and silencing of target neurons
through colored light. In this chapter we study one of these pro-
tein, Melanopsin.

To deal with the second problem, the non-black-box represen-
tation, we developed a model of Melanopsin’s functioning, imple-
mented in the framework of Bayesian Modeling. This allows us
to estimate the unknown variables that influence how Melanopsin
works directly from the observed data from cellular recordings. I
used Bayesian Models in the previous chapters as well, but merely
as a statistical approximation. In this chapter I will use them as a
model able to predict and generate new data. With this approach,
I am able to simulate the behavior of different Melanopsin types
under completely new conditions. I will show, in a tutorial-type of
way, how one can build, fit and enhance such a Bayesian model.
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6.2 Understanding melanopsin using
Bayesian generative models - an
introduction

Understanding biological processes implies a quantitative de-
scription. In recent years a new tool set, Bayesian hierarchical
modeling, has seen rapid development. We use these methods to
model kinetics of a specific protein in a neuroscientific context:
melanopsin. Melanopsin is a photoactive protein in retinal ganglion
cells. Due to its photoactivity and signaling kinetics, melanopsin
has recently become attractive as an optogenetic tool and an impor-
tant component in the elucidation of neuronal interactions. Thus
it is important to understand the relevant processes and develop
mechanistic models. Here, with a focus on methodological aspects,
we develop, implement, fit and discuss Bayesian generative models
of melanopsin signaling dynamics. We start with a sketch of a basic
model and then translate it into formal probabilistic language. As
melanopsin occurs in at least two states, a resting and a firing
state, a basic model is defined by a non-stationary two state hidden
Markov process. Subsequently we add complexities in the form
of (1) a hierarchical extension to fit multiple cells; (2) a wave-
length dependency, to investigate the response at different colors
of light stimulation; (3) an additional third state to investigate
whether melanopsin is bi- or tri-stable; (4) differences between dif-
ferent sub-types of melanopsin as found in different species. This
application of modeling melanopsin signaling dynamics demon-
strates several benefits of Bayesian methods. They directly model
uncertainty of parameters, are flexible in the distributions and
relations of parameters in the modeling, and allow including prior
knowledge, for example parameter values based on biochemical
data.

6.2 Abstract Ehinger 2016 / Spoida 2016
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6.3 Introduction: Why should we
develop Bayesian generative
models of Melanopsin?

Time-varying data can be analyzed with a multitude of statisti-
cal methods. Integrating ordinary or partial differential equations
is one of the major tools in the natural sciences. For example in
order to analyze the morphology of an action potential we could
model the rise and fall by a system of two coupled differential
equations. In a linear approximation this results in two exponen-
tial functions, where the time-constants of the exponential describe
the rise and fall. Alternatively we could use the more complex
Hodgkin-Huxley model (Hodgkin and Huxley, 1952). This system
of equations does not only better describe the data, but allows a
direct interpretation of model variables in terms of molecular and
cellular properties. Furthermore, in many experiments, multiple
factors influence the dependent variable concurrently and the pro-
cess of interest is non-stationary. In that case, extracting single time
constants can be biased and unable to explain the data. And conse-
quently the mechanistic model should be preferred. The benefit of
such generative models is the ability to generate ’fake-data’ using
previously fitted parameters. It allows to predict unseen data and
simulate experiments where, for example, some of the parameters
were changed. Thus, the first step to analyze time-varying data, is
to develop a formal mechanistic model of your data.

Once we specified the model, we need to estimate the values
for the parameters based on measured data. A solution to such
systems of differential equations is most commonly in the form of
maximum likelihood estimates, i.e. the one parameter set so that
the occurrence of the data as observed is most likely. While often
used, another approach has important benefits and improvements:
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Bayesian parameter estimation. It allows us to directly estimate
parameter uncertainties, interpret them intuitively as probabilities
about parameters conditioned on the data and we are able to seam-
lessly include prior knowledge. Due to these benefits, Bayesian
parameter estimation has seen a strong comeback and is becoming
ever so popular (Cronin et al., 2010; Ghasemi et al., 2011).

In order to use Bayesian estimation we need to understand
three concepts: the likelihood, the prior and the posterior. The
likelihood tells us how likely it is, that our data are generated
by a given set of parameter-values. The prior tells us, how likely
certain parameter-values are in the first place. Thus if we a-priori
know that a receptor has a certain time-constant from previous
experiments, we can directly incorporate this knowledge in our
current model-fit and adequately influence the posterior of the
time-constant parameter and all other co-dependent estimates.
The posterior of each parameter is the distribution that shows us
how probable each parameter-value is, given our data and prior
knowledge, thus a combination of prior and likelihood. In the
end we do not only get a single best-fitting parameter value, but
a distribution. Thus in addition to the most probable parameter
value, we estimate the uncertainty of the parameters, the probabil-
ity distribution. A broad probability distribution indicates that we
cannot estimate the parameter well: neighboring parameter values
have a similarly high posterior probability. But a thin distribution
indicates that the parameter can be estimated with high precision.
Furthermore, dependencies between several parameters might be
complex, but can be modelled by these methods. With Bayesian
methods we can flexibly use generative models and, importantly,
the posterior probability can be interpreted as uncertainty of a pa-
rameter, a straight forward and often implicitly used interpretation.

6.3 Introduction: Motivation
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Fig. 6.1 A) Raw data of hOpn4L patch clamp recordings. hOpn4L was expressed in HEK
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293 cells which express GIRK1/2 subunits. The GIRK-mediated K T -currents were
sampled at 50-200Hz. Blue light (470nm) activates current influx, green/yellow
light (560nm) deactivates the influx. B) Data were resampled to 5 Hz. We then
normalized the range by mapping the 95% percentile of each cell between 0 and

-1.

As an example to guide this paper we use patch clamp record-
ings of cells expressing melanopsin, a photosensitive opsin-type
occurring naturally in the retina. In mammals it is expressed in
intrinsically photosensitive retinal ganglion cells (ipRGCs) which
project to the suprachiasmatic nucleus and influence the circadian
rhythm (Hankins et al., 2008; Do and Yau, 2010). A melanopsin
expressing ipRGC will increase firing frequency if photons of a cer-
tain wavelength activate the protein. Melanopsin is activated using
blue light (470 nm) and can subsequently be deactivated using
green-yellow light (560 nm). Melanopsin variants differ in their
activation/deactivation kinetics. Mouse melanopsins’ (mOpn4L)
activation is sustained, once activated it stays activated for sev-
eral seconds to minutes, whereas human melanopsin (hOpn4L)
shows only transient activation upon light-stimulation (Spoida et
al., 2016). Melanopsin presumably occurs in two states, the M
(active) and R (resting, inactive) states (for a review see (Schmidt
and Kofuji, 2009), but see (Emanuel and Do, 2015)). Activating
the protein with blue light increases the probability of the R-state
to change its configuration to the active M state. Concurrently,
a constant transition-probability from R to M and M to R exists
that leads the cell to an equilibrium distribution of melanopsin
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in M and R state configurations. Here, we use data from patch
clamp recordings in human embryonic kidney cells (HEK) stably
expressing GIRK 1/2 subunits (Spoida et al., 2016), where GIRK
channels are activated by human and mouse melanopsin using
blue light and subsequently deactivated with green-yellow light
(Figure 1).

In this paper we develop a Bayesian mechanistic model of
melanopsin and discuss the implementation of the model, the
inverse fit, model checks, the interpretation of the parameters and
how we can exchange parts of the model in a modular way to
improve our understanding and design new experiments.

6.3 Introduction: Motivation
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6.4 Method and Results: From Model
Building, Parameter Estimation and
Diagnostics

6.4.1 Model Building

It is helpful to start with a graphical model representation
(Figure 2 A). In this paper we loosely follow the model notation
in (MD Lee and EJ Wagenmakers, 2014). Once the graphical
model is specified, it can be directly implemented into a Bayesian
programming language. In the graphical model (Figure 2 A) all
parameters that change over time are shown inside the time point
box and indicated with time-indices. The main parameters are the
proportion of firing (M) and resting (R) states. In every simulation
time step ¢; there is a certain probability to switch states from
M to R: p(MtoR);. This transition probability is influenced by a
constant rate Cj;r and a green-light dependent rate L,;z. Of
course the light dependent rate is only taken into account, when
there is green light, thus we need a dummy-coded green light
variable L with O when there is no light, and 1 when the green
light is active. Because light-activation happens at specific time
points determined by the experimenter, the transition probabilities
change over time, i.e. they are non-stationary. The transitions
are implemented using ordinary differential equations. One of
the assumptions of the model is, that the recorded patch-clamp
currents are directly proportional to the proportion of M-state. We
don’t expect the patch clamp noise level to change during our
recording time, and thus we include a constant Gaussian noise
term into our model. To summarize: We model the patch clamp
currents using a Gaussian where the mean is proportional to the
amount of M-state and thus non-stationary over time. The model
allows us to intuitively grasp the parameters, interactions and
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mechanisms that are needed to model our data. A more formal way
to describe this implementation is to describe the model as a non-
stationary two-state hidden Markov model. We then estimate the
transition probabilities and relevant factors. All scripts and models
are documented and publicly available under http://osf.io/bn6pk.
In this paper we make use of the STAN packages (B Carpenter
et al., 2017), in combination with R (R Core Team, 2013). The
non-stationarity in our case was implemented by a logistic linear
model with time-varying predictors. The model code is shown in
Figure 2 B, parallel to the model graph. In the following, square
brackets reflect arrays, round brackets reflect functions. In our
case, the linear model can be described by:

PrioM [t] = logit(Crar + Lp[t] - Lra)

Where cr)s is the constant change parameter, Lp[t] defines at
which time intervals blue light is active and L), is the blue light
dependent change parameter. The logit function maps values from
the domain -infinity to infinity to the domain of O to 1, thus in the
domain of probabilities. This formulation as a logistic linear model
allows us to connect the estimation of parameters over multiple
cells with the idea of hierarchical or mixed models (see section
Modular Improvements, hierarchical fit further down). The same
formula defines the spontaneous transition probability from M- to
R-state. Thus for the size of change of R-state at each point in time,
there exist two influences: Some fraction of melanopsin changing
their state from M to R and in the same time step some spontaneous
change from resting state to active state. The combined probability
determines the proportion of R (or M respectively) as captured by
using ordinary differential equations. At each simulated time step
(with a predefined time-resolution At) we update our R-parameter
(and M respectively) by a first order integration:

AR = paror[t] * Mt — 1] — prionm[t] * R[t — 1]

6.4 Method and results
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Fig. 6.2 A) A graphical model description of the basic model. Filled parameters depict
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data that is given. At each point in time a fraction of the R state is changed
into the M state with the non-stationary probability p(RtoM ). The same process
governs the change from M to R. The transition probabilities are influenced by
constant (stationary) leakage probabilities and non-stationary, light dependent
activations. The active M state is used as a model of the measured current of the
patch clamp. These recording are inherently noisy, and we model this noise using
a Gaussian function with the non-stationary mean M; and the standard deviation
o. The parameter for the initial M/R state at t=1 was omitted from the graph. B)
The graphical model implemented in the STAN programing language.
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R[] = Rt —1] + AR

We use a discrete time notation here to parallel the code of the
implementation. In the two-state model it is necessary that the
amount of M state is equivalent to the inverse of the R state.
Thus:

M[t] =1 — RJ[t]

We can make use of this relation and only calculate the change
in R state and invert the change in the M state, but if we want to
enhance the model to three states, it is more sensible to implement
both changes, dR and dM.

The final important relationship to define is the relation to
our data and including a noise distribution. In STAN this can be
achieved by using:

I[t]  normal(M]t], ccurrent)

In STAN the tilde (x) means "is sampled from". Thus, the line
defines that the measured current I is sampled from a normal
distribution with time-varying mean and constant variance o2.
Before the model fit we need additional statements about the type
and range of parameters, we need to define the initial state, e.g.
which could be random. This concludes the implementation of the
specified graphical model into STAN.

6.4.2 Bayesian Parameter estimation

In the next step we estimate the posterior parameter distri-
butions. Here we will give a short introduction of Bayesian data
analysis and Monte-Carlo sampling methodology. Our goal is to
estimate the posterior probability distribution: colloquially, what is
the probability that each possible parameter value could underlie
our data? According to the Bayesian framework, this consists of

6.4 Method and results

197



198

firstly the likelihood of the data given the parameter. In other
words how likely is it, that the data are generated from a specific
set of parameters. Secondly, from the prior distribution, which
states how probable a parameter is before using the data, that
means from prior knowledge. In more formal terms, we are inter-
ested in the posterior distribution (p(©|D)) given the likelihood
of the data (p(D|©)) and prior parameter probabilities (p(©)).
Bayes theorem states that these are directly related to each other (
P(OD) x p(DO)*p(O)). An example: We record a neuron spiking
with 10Hz. Our imaginative model assumes that the spiking rate
of the cell is sampled from a normal distribution with a mean and
a fixed standard deviation at 2 Hz. This model has only a single
parameter to be estimated. We can easily calculate the likelihood
of the Gaussian: We will get a low likelihood for a set of param-
eters where the mean is 5 Hz, a higher likelihood for a mean of
12 Hz and an even higher likelihood for a mean of 10 Hz. If we
incorporate prior knowledge that these specific neuron types are
very rarely observed with a spiking rate of higher than 5Hz, Bayes
rule will integrate the information gained from the data and the
prior-information and we will find the most likely parameter, given
prior and data, at a lower estimate, for example 8 Hz. Whether
data or prior dominates the posterior depends on how accurate,
or certain, your prior knowledge was specified, and how much
uncertainty, or noise, about the parameter the data has. Bayes
rule automatically finds the optimal compromise between prior
knowledge (what we think is a likely result) and our data (what
actually happened).

Calculating the posterior is straight forward for a single pa-
rameter: We could randomly try out all parameter values using a
grid approach, calculate the likelihoods and priors, and observe
the posterior. This would be very ineffective, especially for if we
have to estimate multiple parameters concurrently as there is a
combinatory explosion. This is where the markov chain monte-
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carlo (MCMC) sampling comes into play. Instead of randomly
sampling the space, we start at a random initial value and propose
to jump to a new value. We evaluate the posterior at this value,
if it is higher (thus more likely) than the current value, we will
go there. If it is lower, we will go there only with a probability
inversely proportional to the difference. From there on we repeat
the procedure for many iterations. This simple rule (known as the
metropolis algorithm, (Hastings, 1970)) will ensure that we visit
areas more often where the posterior is high, but from time to time
explore other, less probable areas as well. Moreover our Markov
chains fulfill all assumptions of the ergodicity theorem, thus it is
guaranteed that the Markov chain will ultimately converge to the
true posterior. In the end, our estimate of the posterior consists
of how often we visited a certain parameter value. The MCMC
sampling algorithm allows us to estimate highly complex models
with many parameters.

Over the years more sophisticated algorithms have been devel-
oped. In this paper, we use NUTS, the No-U-Turn sampler, it is more
efficient than the metropolis samplers in the case of hierarchical
linear models with correlated parameters. This algorithm stems
from the family of Hamiltonian monte-carlo (HMCs) algorithms.
With HMC algorithms we replace the randomly chosen proposal
step of metropolis with an algorithm that more effectively samples
the posterior. Imagine that the inverse of the posterior has a bowl
shape, thus the most likely points are at the valley, and the most
unlikely one raise as mountains the further away you go. We ran-
domly start at a point in the posterior and place a marble and send
it with a small push in a random direction on its way. We now
simulate for a while and the position the marble ends up, is our
new proposed value. We compare it again to the current value and
proceed as before. The marble has some momentum so it might
just be enough to roll through local minima. The NUTS algorithm
is based on HMC but in addition makes certain to not allow any
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u-turns where the marble rolls uphill (due to gained or initial mo-
mentum) and would come down the same way again. The exact
algorithm is somewhat more difficult because it needs to make cer-
tain that it converges towards the posterior but this is the general
idea. For details we refer the interested reader to (Homan and
Gelman, 2014). NUTS allows for an effective sampling of the pos-
terior and reduces the risk to get stuck in local minima or passages
where the chains could get stuck in the posterior landscape.

6.4.3 Model Fit & Sampling Diagnostic

Next we describe how STAN estimates the posterior distri-
bution. Stan is a sophisticated open source implementation of
HMC/NUTS for a multitude of programing languages (R, Matlab,
Python, Julia, Stata and a command line tool). It allows to specify
models in a comparatively simple way and has many tools to eval-
uate the results. The model comes with their own programming
language which is not difficult to learn if experience in python,
R, matlab or ¢+ + is available. The STAN-model is then compiled
to ¢c++ code by the STAN interface and sampled by the MCMC
algorithm. Sampling consists of two phases, the first is a warmup
period where sampling-parameters are calibrated by the NUTS al-
gorithm to effectively sample from the shape of the posterior. This
is necessary as new proposed values could be outside the allowed
range of the parameter and in that case we would have to reject
this location proposal, thus we have an overhead of likelihood
calculations. If this happens too often, we sample ineffectively. But
at the same time, we do not want redundancies in the sampling
resulting from small (but not rejected) step sizes. This tradeoff is
automatically calibrated in the warmup period and the following
sampling period defines the final outcome of our posterior.
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The chains of an MCMC sampler need to be diagnosed for
proper convergence. Sometimes we can get stuck in certain pa-
rameter value constellations, for example in a bimodal posterior
distribution, or the MCMC algorithm makes too small jumps and
we do not explore the space appropriately. It is difficult to diag-
nose those problems when we only look at a single chain with
a single starting value. Therefore we use multiple chains which
run independently. This allows us to check whether the chains
converged in the same posterior distribution, which is necessary
(but not sufficient) for successful sampling. There are several fea-
tures that can indicate proper convergence: We visually inspect
the chains (Figure 3 A), compare the variance between chains to
the variance in one chain (termed RHat, and should be close to 1),
look at the overlap of the posterior densities of the chains (Figure
3 B) or we check the autocorrelation of a chain (Figure 3 C), how
independent two following samples are from each other. A high
independency is preferred here. In Stan this is often reported as a
single number, the effective number of samples, N, ¢, which is the
number of samples corrected by the autocorrelogram ((Gelman,
Carlin, et al., 2013) p. 286). In our first model, we ran 5 chains
with 300 warmup iterations and 500 samples. Visually we see that
the chains seem converged and the posterior overlap. Similarly
the Rhat is below 1.1 for all parameters. The autocorrelogram
shows autocorrelation up to a certain degree, but it does not seem
worrying (Figure 3 C, upper panel). In a similar vein, the effective
samples are 700 for the upper and 1670 for the lower parameter,
representing the ’best’ and 'worst’ effective sample value in this
model. According to all our criterions, the chains of the MCMC
seem to have converged.
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A) four independent MCMC chains with 500 samples each of two parameters,
RtoM and Rinit. The chains all converged to the same value range. The variance
between chains is similar to the variance within chains. Visually, these chains
seem to converge to the same value. B) The posterior density (marginals) of the
chains in A. The chains all sample the same region of the posterior, this is an
indication for convergence of the chains. These densities can further be simplified
by specifying for example the medians and 95% quantiles of the distribution. C)
The autocorrelogram of the two parameters. The upper parameter (MtoR) has
a higher autocorrelation, thus the effective number of independent samples we
drew from the posterior is smaller than for the lower parameter (Rinit).

6.4.4 Posterior Predictive / Model checks

After we have samples of the posterior distribution and prefer-
ably before interpreting the results we need to check the adequacy
of our model. A powerful tool of generative models is, that they are
able to simulate new data from the current estimated parameters.
These new data should capture the important dynamics and effects
of our original data. Otherwise the model would be inadequate.
When we sample new data from the posterior parameter estimates,
this process is called posterior predictive model check. In our ex-
ample, we sample 1000 new traces from our posterior parameter
estimate distributions (Figure 4). Because we randomly sample
from a distribution of estimates, each trace will be a little bit differ-
ent. Our original data should be in the 95% credibility interval of
the posterior predictive set. Only after we ensured that the model
is adequate, we inspect the posterior parameter estimates visually
or calculate and interpret summary statistics (often median and
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percentiles) of the parameter distributions and interpret the results.

The posterior check reveals two problems with our model. In
the initial phase, marked with (1), we observe a mismatch between
the observed and the predicted data. Here, the posterior predic-
tives indicate that the current is slowly increasing, whereas the
data indicate no such trend. This first model mismatch can be
readily explained: In the initial phase, the expressed melanopsin
proteins are not activated, they need a first activation by blue light,
before they can acquire a new photoactive equilibrium between
the R and M state. But the model assumes falsely, that this equi-
librium can be acquired from the beginning. By either excluding
this portion or adding another initial state for melanopsin, thist
difference could be modeled. The model mismatch at (2) is cur-
rently not well understood. Even though blue light is still activating
melanopsin proteins and forcing them to the M state, the current
is diminished again. Mechanism that are able to resolve this range
from internalization of receptors, to effects of delay due to the G
protein-coupled receptors (GPCRs) or due to a refractory period
of melanopsin where the stability of the Schiff-base, which con-
nects the retinal with the protein is unstable (Tsukamoto et al.,
2015) This is cannot be captured by the current model and thus
the posterior predictive show an expected maximum at the end of
the blue period. The posterior checks revealed two problems with
this model, especially the first one could bias our parameters. To
cope with these problems is left open for now, but it is not difficult
to resolve them by enhancing the model.

We are now ready to interpret our parameters for this single
cell fit. We expected the initial R-state parameter to be around
one, due to our baseline correction. This is indeed the case, the
average initial state for R is 1 [0.99,1]. The estimated standard
deviation (the estimated measurement noise) of our signal is 0.052
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Fig. 6.4 A) The light gray band depicts the 95% credibility interval of 1000 posterior
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predictives. Posterior predictives are 'new cells’ that are simulated from our
posterior parameter estimates and reflect the range of possible outcomes of the
posterior model fit. The dark gray line depicts the median posterior predictive
value. The black curve depicts the original data. The annotation "1"0.1f and "2"
are discussed in the text. B) Parameter estimates of the single cell shown in A).
median and 95% percentiles are shown.

[0.050,0.054]. We defined four main parameters in our model: The
first is cryy, it indicates the constant and spontaneous transition
probability from the resting to the active state. The estimate is
-6.5 [-6.6, -6.5] on the logit scale. In order to convert this to a
more sensible unit, first we take the inverse of the logit function.
Then we need to raise the 1-x to the sampling frequency to gain
the probability per second:

%

. ] =1— (1 —invlogit(x))"*

p(z)[

Thus converted to percent per second, the spontaneous change is
on average 1.4 % [1.3 %, 1.5 %]. The spontaneous transition back
to the resting state ¢, is the second parameter and for this cell it
is a bit higher with on average 3.9 % [3.7 %, 4.0 %]. We can also
construct the equilibrium point from these data, (1.4)/((1.4+3.9)
)~0.26, thus we expect the equilibrium state to be at around 26%
of the maximal theoretical current (the maximal M state). In order
to convert the parameters Lg)s, the activation by blue light, one
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needs to take the concurrent constant change into account, the
formula changes to:

%

] =1 — (1 — (invlogit(const + x) — invlogit(const))*
s

p(a)]
Thus for the activation by blue light we get 38.1 % [36.8 %, 39.6
%] and for green light deactivation we see a change of on average
24.7 % [22.7 %, 26.9 %]. Keep in mind that this is an estimate for a
single cell, thus the posteriors are comparably tight, the uncertainty
about the parameters is low. More complex models take the data
of multiple cells in account and are introduced in the next chapter.
This concludes the bayesian model fit. To go further from here we
recommend the introduction book by Kruschke (Kruschke, 2014),
the applied problem-centered book by Wagenmaker (MD Lee and
EJ Wagenmakers, 2014) and the book by Gelman (Gelman, Carlin,
et al., 2013).
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6.5 Model Extensions: Multiple cells,
priors, different melanopsin variants
and latent models

We are now ready to discuss further enhancements to the
model. We advocate to start simple, with a basic working model
and after thorough checks, add the modules that are needed for
your analysis.

6.5.1 Hierarchical Model Fit

We successfully estimated parameters for a single cell. Now
we need to check whether these hold for the whole population of
cells. A standard procedure is estimating the parameters of each
cell individually and then taking the average as the population
average. This is a valid and straight forward approach, but has
some drawbacks: Cells where parameters are difficult to estimate
are weighted the same as cells where parameters are certain. In a
similar vein, the single cell parameter estimates are not influenced
by the parameters of other cells, even though we can leverage this
population knowledge to get better single cell estimates. In recent
years mixed linear models (also known as hierarchical models) are
becoming more and more popular. In mixed models we fit all cells
at the same time and assume that the parameter value of each cell
is sampled from a parent population parameter-distribution. In
Figure 5 A we see that the single cell estimates (green, line shows
mean and distribution shows the estimation precision) are samples
from an overarching population distribution of the parameter, in
this case a normal distribution with two parameters. If all cell-
parameters are sampled from the population-distribution, it is
reasonable to expect that single cell parameters that are in the tail
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of the population (thus extreme outcomes or outliers) are unlikely.
We thus move our single cell estimate closer to the mean of the
population-distribution, an effect termed shrinkage. The amount
of shrinkage depends on the probable distribution of the single
cell mean and the distance of the cell mean to the population
mean (the variance of the population needs to be included in the
distance). The population distribution parameters are estimated
concurrently to the shrinked single cell estimates. Because we
estimated parameters from the same cell, similar to a within-subject
design, we expect that multiple parameters could be correlated
with each other (Figure 5 C). For example, if we estimate the
refractory period of a neuron to be short we might also suspect
that it shows a higher maximal firing rate. Thus when estimating
multiple parameters of a cell, we have to take correlations between
the parameters into account. This also allows for shrinkage over
the correlation parameter. If there is no correlation in the data
nor prior, the estimate will also be close to zero and shrinkage
will not take place. Because population distributions are usually
normal distributions we can elegantly assume all parameters are
based on a multivariate normal distribution with means, variances
and a correlation matrix (or equivalently means and a covariance
matrix). This part is equivalent to a linear mixed model where
all parameters have random slopes and the complete correlation
matrix is estimated.

In practical terms we need to introduce some more parameters
to be estimated. The model is kept untouched for the critical cal-
culations in each time step, but of course the underlying data and
the parameters are different for each cell. We introduce a matrix
notation in the code, where the parameters are saved in a matrix
termed beta (dimensions n-parameter * n-cells). We also introduce
population-vectors with the prefix 'm ’ or ’s_’ for population mean
value or population standard deviation value, for example M,
with n-parameters for the mean. Further we need a correlation

6.5 Model Extensions

207



A ® B N

n (ellsj

Fig. 6.5 A) Hierarchical parameters. The blue distribution is our population distribution

208

with two parameters, p and o. Below the posterior estimates of the single cells
are shown in green. They give an estimate of the mean and its uncertainty. When
fitting a hierarchical model, the single cell posterior means are shrunk towards
the population mean (blue arrows). Shrinkage is strongest for uncertain (broad
distribution) parameters and parameters that are furthest away from the popu-
lation mean. B) Hierarchical model graph. The parameters of a single cell (see
Figure 2) are assumed to be sampled from an overarching population distribution.
Thus each single-cell parameter is assumed to come from a population with mean
and variance as shown in A). C) Dots represent parameter estimates of single
cells. Here we observe a correlation between two population parameters. In order
to capture this relationship, we need to include the correlation term between
all population parameters and model it as one combined multivariate normal
distribution
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matrix (n-parameter * n-parameter) and a population-vector for
the variance (dimensions n-parameter, needs to be positive). In
stan we can conveniently calculate the covariance matrix using:

covmat < —quadformdiag(corrmat, Spetqa);

Finally we need to define the relation of the single cell parameters
with the multivariate population:

beta[cell;dz] < multinormal(mpetq, covmat);

This statement is repeated for each cell through a loop. This states
that the beta values (the n-parameter dimension is vectorized, thus
hidden) are sampled from a multivariate normal with the given
mean and covariance matrix. The initial value of R for each cell has
to be between 0 and 1. But if we sample from a normal distribution
with mean 0.9 and SD of 0.1, we will sometimes sample values
greater than 0. We can simply ignore those values and in those
cases resample until we get a value <1. Alternatively we can use a
function that is strictly bounded between 0 and 1, for example a
beta-distribution:

Rinit[cIdx] beta(alphaginit, betarinit)

Using pairwise scatter plots of the MCMC values, we noticed that
two parameters of the posterior estimates are highly correlated:
crM, the spontaneous change to an active state, and Lgy, the
activation through blue light. The correlation stems from the linear
model definition and due to the logit scale. In order to activate the
cell by blue light, L), needs to act against the very large negative
number of cr); (a large negative number on the logit scale forces
the constant firing probability of the cell to be close to 0). The
change at each point in time is:

p(RtoM) = invlogit(cgran + Lrar)
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Thus L i) needs to counteract cgys. Let’s take for example cgryr =
—10 £ 1 (=0.0001 %). When light activates the cell, the total
should be around 75 % :

p(RtoM) = invlogit(1 £0.1)

Therefore it is clear that Lry; = 11 4+ 1.1. Because the value of
cr M is expectedly very negative on the logit scale, it will always be
a large part of L), and therefore we get the correlations. This is
problematic for MCMC sampling algorithms, they do not converge
well with high correlations between parameters. There is a trick
to reduce the correlation: reparameterization. Reparameterization
changes how parameters are related to each other. It only changes
the sampling procedure, but not the outcome or the estimated
model because we keep the relation between parameters the same.
In this case we change:

Lpy(cldz] < —betalcldz, 3]

to
Lry[cldx] < —betalcldz, 3] — crar|cldz]

Because we sample beta and not Lz,;, we changed the parameter
space that is sampled by the MCMC algorithm, to one that does
not show the high correlation between parameters, but we don’t
change the actual parameter value. The reparameterization greatly
reduced the time to convergence and in addition improved the
effective samples NV, ;;. With some simple addition to the model
we are now able to estimate shrinked parameter values for all cells
concurrently. This model is more complex than the simple model,
in order for it to converge we needed to initialize the chains at
values in the range of the posterior, we used the same values on
both the single cell and the population level and initialized the
means but not the variances.
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Fig. 6.6

It is now necessary to draw posterior predictives to evaluate
whether our model is adequate. In hierarchical models, we can
perform posterior predictives in at least two cases: either we take
the estimated parameters of each cell and do the same procedure
as in the basic model for each cell, or we sample "new cells" from
the estimated population multivariate normal distribution. These
predicted new cells reflect the range of possible results predicted
by our model, prior and parameter estimates. For ease of display,
we directly plot the amount of M state without the additional
noise term added. The first case, selecting the parameters of the
single cell, can be seen in Figure 6A. Here the posterior predictives
match the real data (Figure 1 B) very well. In the second case we
sample new cells, as expected, this results in a broader distribution
(Figure 6 B). The general shape again matches the original data
very closely.

After the model posterior predictive tests we look at the results
of the model. Similarly to the posterior predictive we can observe
results at two different levels. Those two levels, single cell and
population, can be seen in figure Figure 7 A,B. In the top posterior
estimates of the population distribution, the median distribution
and the mean +95% credibility interval of the mean are shown.
In the lower row the single cell uncertainty estimates and their
respective means are shown. The population distribution should
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match the distribution of the single cells, as is the case in A, for
Ljsr and in B for the beta-distribution of the initial R-state.

We can summarize the values using median and 95% per-
centiles as in Figure 7 C. The spontaneous firing rate is 0.5%
[0.2%, 1.0%], while the spontaneous change to the resting state is
2.7% [2.1%, 3.4%], thus the equilibrium point of the population
is at 17.4% [8.6%, 28.6%]. Activation by blue light changes the
transition probability by 37.3 % [34%, 41.1%] whereas green light
deactivates with a lesser rate of by 9.1% [8.1%, 12.0%]. We can
also estimate the probabilities of the cell we fitted in the beginning,
which will be affected by the shrinkage factor. Here we see that
the single cell estimate of the spontaneous firing rate was 1.4 %
[1.3 %, 1.5 £] but in the hierarchical model it is 1.94 % [1.64
%,2.04 %]. Thus the shrinkage moved the single cell estimate
towards the population-mean of 2.7%. This new estimate will be a
better prediction of a new measurement of the same cell because
it is informed by the estimates of all other cells via shrinkage. In
order to fit multiple cells we needed to add hierarchical population
distributions and use a reparameterization-trick. From the model
we can sample new cells and estimate in what range new cells will
be.

6.5.2 Priors

Another strength of Bayesian data analysis is the possibility to
add prior knowledge to your data. In STAN this is straight forward,
for example if we expect that our estimated noise-level is around
0.02 with a standard deviation of 0.01 we add in the STAN-model
block:

OCurrent X normal(0.02,0.01)

Chapter 6 Bayesian Generative Models and Optogenetics
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Fig. 6.7 A,B) Population distribution of deactivation with green light (La/g) and the
initial R state (R;nit) respectively with 100 redraws from the posterior chains,
the pointrange depicts the mean and 95%-percentile. The lower plots depict
single cell posterior estimates and respect mean posterior. L is depicted on
the logit-scale. C) Results of all parameters. The top plot is in %, the lower in
natural units for the respective parameters.

The MCMC sampler incorporates this prior in the appropriate
way and integrates it with the likelihood of the standard deviation
of the data. Importantly, if we would use a uniform-prior, for ex-
ample 0.01 - 0.03, we restrict the domain of possible parameter
values. Thus even if we have strong evidence from the data that the
standard deviation should be 0.05, our posterior will not be able to
put any weight, because the prior is zero. This cannot happen with
the above normal distribution, because the normal has non-zero
weight (albeit very small) from minus infinity to infinity. Another
more elaborate example could be to include previously measured
biological constants into the model. For example Emanuel and
Do 2015 (Emanuel and Do, 2015) proposed a numerical three
state model for melanopsin based on biochemical data. They made
use of photon absorption rates, spectral templates and quantum
efficiencies to simulate the wavelength dependencies of the distri-
bution of states. They then qualitatively compared it to their data
and concluded that melanopsin can occur in three states. It is very
well possible to enhance the model and include these biochemical
data as priors in the data fit and estimate the certainty of the poste-
rior. Priors allow to appropriately incorporate scientific knowledge
already at the stage of data fitting.
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6.5.3 Wavelength Dependencies

So far we activated and deactivated melanopsin using two
distinct wavelengths. But we can repeat this process with many
other wavelengths as well. In that case we are interested to model
an activation and a deactivation function of melanopsin based on
the wavelength. Of course this function is a priori unknown. While
it is possible to use non-parametric basis-functions (e.g. splines)
to estimate a non-linear form of the function, in our case there is
reasonable evidence (Emanuel and Do, 2015; Spoida et al., 2016),
that the activation function follows a Gaussian tuning function.
We incorporate this in our model (Figure 8 A) and decided to use
a Gaussian with three unknown parameters: a mean, a variance
(those two parameters regulate at which wavelengths the cell get
de/activated) and a normalization parameter which regulates the
strength of the de/activation (Figure 8 B).

6.5.4 Bi- vs tri-stability

It has recently been suggested, that Melanopsin has not two
states but a third one (Emanuel and Do, 2015). In that case parts
of the M state transfiguration change not to the R state, but to the
E (extramelanopsin) configuration. In analogue to ssEmanuel &
Do who proposed a numerical three state model simulation, we
add this third state X. Therefore the model changes as follows:
dR = MtoR+M[t—1]-RtoM«*R[t —11];
dE = MtoE:M[t—1]-EtoM=E[t—1];

dM = EtoM+E[t—1]+RtoM=*R[t—1]-MtoR+M[t —1]-MtoE-M[t —17;

In this model specification transitions from R to E and vice versa
are not allowed, which is grounded in energetic constraints where
a direct conversion from R to E state has not been observed (Mat-
suyama et al., 2012). We could perform bayesian model selection
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Fig. 6.8 A) Graphical model with wavelength dependency. We replaced the two light
sources with a single one that is able to change the wavelength and two functions
that translate the wavelength to an activation or deactivation probability. B)
The wavelength functions have three parameters. Parameter a regulates how
strongly the de/activation is. Parameter x regulates at which location the maximal
de/activation is to be expected and parameter o regulates on what range the
de/activation can occur.

on the two state against the three state model to see which model
shows more support from the data. This can generally be done
using the bayes-factor or an information criterion for example DIC
or WAIC. A discussion of the differences or preferences can be
found for example in (Gelman, Carlin, et al., 2013). It is to be
expected that we need similar data as (Emanuel and Do, 2015) to
be able to show that melanopsin has indeed three states. If our
current data is already well explained by two states, adding a third
state will not improve the model-fit, if we punished for using the
additional number of parameters. Indeed a model with three states
of a single cell has a WAIC of -5135, while the two state models
has only -3696, where a higher number is better. This does not
indicate that melanopsin has two states, only that two states are
adequate to describe the very limited data gained from a single
cell. This module shows the extension of our basic model to be
able to directly test two competing hypothesis in a single coherent
framework of data analysis.
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Fig. 6.9 We add a third state to our model. Direct changes from R to E or E to R are not
allowed. Therefore we only need to add new changes from M to E (EtoM and
MtoE)
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6.5.5 Differences between cell types

Melanopsin occurs in different species and has slightly differ-
ent sequences. Two types can show different activation dynamics
and thus different underlying kinetic parameters. We recorded
data that allows us to compare a human melanopsin (hOpn4L) to a
mouse-origin melanopsin (mOpn4L). We use the basic model with
the hierarchical model extension for multiple cells. In our model,
we can include this as a factor in the linear model. Thus we adapt
two lines in our code:

p(MtoR)[cell] < —invlogit(cparr[cell] + Lareen|t] * Larr[cell]+

ismouse[cell] * (CMRfmouse[Cel” + LGreen[t] * LMRfmouse[CellH)));

And the respective p(RtoM ) line as well. The idea is to model
both cell-types with the same parameters, but allow the parameters
to differ if the data of a mOpn4l cell is being fitted. This is the same
way one would model this with treatment coding in a classic linear
model. We end up with the parameters for a hOpn4L cell (cjr
and L,/r) and the difference in the parameters to a mOpn4l cell
CMR—mouse and LR mouse). If we would like get the parameter
estimate for mOpn4l directly, we can simply add the two estimates.
The results of this model can be seen in the Figure 9 B.

The differences between the two protein variants kinetics’ can
be explained by various factors. For instance, the active center that
connects the photoactive retinal to the protein using a Schiff-base
is more stable for mOpn4L than hOpn4L (Tsukamoto et al., 2015).
They also differ in phosphorylation of the intracellular loops and
the C-termini (Blasic, Lane Brown, et al., 2012; Blasic, Brown, et
al., 2012; Blasic, Matos-Cruz, et al., 2014; Fahrenkrug et al., 2014).

6.5 Model Extensions

217



A human maus B

6600

zed]

S

>

ejep mes

0.04 =
-0.4 =
=
-0.84
pp— - —" S

0 25 50 75 100 125 0 25 50 75 100 12
time [s]

[nml'mali
6600,

current

init R

aAnaipaid Jouarsod
Q

a

I *=
-

- mOpnal

0 20 40
change [%/s]
[ -

i %

T
0.0 05 1.0

parameter estimate

Fig. 6.10 A)The red curves depict 13 cells with human melanopsin (hOpn4L). The blue
curves depict 14 mouse melanopsin (mOpn4L). The upper panel depicts the
preprocessed raw data, the lower panel the mean posterior predictive model fit.
B) The plot depicts the parameter and their differences of a combined model fit
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of hOpn4L and mOpn4L

But other proteins or factors cannot be excluded to influence the

differences as well.
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6.6 Chapter conclusion

In this paper we developed a basic generative model for the
activation and deactivation kinetics of melanopsin. We inverted
the model using bayesian parameter estimation in the STAN frame-
work and show how to interpret the parameters of the model and
how to predict future data from the model. Using our generative
model we are able to inform new experiments and directly tackle
uncertainties of underlying parameters.

6.6 Chapter conclusion
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General Discussion

7.1 Summary

In this thesis I followed visual information throughout the
brain. I discussed how new categories are learned, how internal
information is used for decision making and for predicting future
input over eye movements. I then showed in a new paradigm how
to explore the mechanisms that generate the decisions where and
when to look next. Finally I introduced the framework of a Bayesian
Generative model based on the example of Melanopsin. In the
following, I will give a short summary over the chapters followed
up with discussions on the connections between the topics.

In the second chapter, I started with the observation that the
human visual system is able to distinguish naturally occurring cate-
gories with exceptional speed and accuracy. This hints at a rapid,
fixed, one-shot process. Nevertheless, the brain is also capable of
learning completely new categories easily. In our study (Kietzmann
and Konig, 2015), we taught subjects new categories to investigate
how these category formation develops over the course of learning.
In these kind of studies greatest care needs to be employed to ac-
count for possible low-level confounds. That is, it could be that the
categories to be learned are more similar within themselves than
between them by accidental design. Therefore, we adopted a learn-
ing paradigm with strictly controlled parametric stimuli. In the
study, we made use of Magnetoencephalography (MEG), a method
to record brain activity with millisecond resolution. We developed
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a new adaptation paradigm, similar to fMRI adaptation, and used
a new analysis approach to detect signals of category selectivity.
During learning, subjects showed a remarkable shift in cortical
activity: After initial training, subjects showed a very high catego-
rization accuracy. We found category selectivity in prefrontal areas
starting at 275ms. After twenty-two sessions of training, subjects
improved their categorization performance further. Concurrently
the category selective activity shifted to 125ms in occipitotemporal
cortex. This shift is interesting, as category learning effects are
often reported to emerge by multiple different systems (Ashby and
Maddox, 2011; EE Smith and Grossman, 2008; Ashby and Ell,
2001) depending on the task-requirements. We build on this idea
and interpret our findings accordingly: extended category learning
leads to a change through which system categories are extracted.
We speculate that category learning starts from a very flexible, slow
system in prefrontal areas, and subsequently changes to a fast,
feature-based, automatic system in the temporal cortex.

In the third chapter, I was interested in perceptual decision
making, especially in the case when percepts are actively generated
by the brain. In our study (Ehinger, Hausser, et al., 2017) we
made use of the phenomenon of filling-in in the physiological
blind spots, the area of the visual field where the optic nerve
passes through the retina and no photoreceptors can be found.
Even though no direct input from the eyes reaches our brain, the
percept at this area is as vivid as in any other region. Therefore,
this region gives us the unique opportunity to compare partially
inferred to veridical percepts. In the ambiguous condition, when
two physically identical stimuli were displayed, subjects showed
a bias opposite to the optimal one: They preferred to choose the
blind spot stimulus over a veridical one. This is particularly striking
as for the blind spot stimulus no relevant information was available
to correctly perform the task. We concluded that "Humans treat
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filled-in inferred percepts as more real than veridical ones" (Ehinger,
Hausser, et al., 2017).

In the fourth chapter I used the filled-in percepts at the blind
spots again. In our study (Ehinger, Konig, et al., 2015), we were in-
terested in violations of peripheral predictions over eye movements.
Whenever we perform eye movements, it is reasonable to assume
that we produce active predictions on the future incoming signals.
We tested this idea by introducing stimulus changes during eye
movements. In addition, we modulated the reliability of the periph-
eral prediction: In half of the trials, the prediction was based on
veridical information, in the other half the prediction was based on
inferred information from the physiological blind spot. Thus once
veridical predictions and once inferred predictions were tested by
making eye movements. Concurrently to the eye movements, we
measured EEG in order to analyze the occurrence, timing and loca-
tion of prediction errors. When exchanging the stimulus during the
saccade, we observed two separate sets of prediction errors, one
early (<250ms) and one late (>250ms) after fixation onset. The
early prediction errors showed lateralization, that is a dependence
on whether the saccade was performed to the left or the right.
This is reasonable, as low-level visual predictions e.g. of the right
peripheral field of view, should be represented dominantly in the
ipsilateral cortical hemisphere. The late prediction error was a
global representation of change. It is interesting to note, that we
only observed an interaction of prediction error and the blind spot
for the late, but not the early component. This could mean that
early prediction errors make use of the inferred prediction as if it
was veridical, which is not the case for the late prediction errors.
Our results also confirm that there are multiple levels of prediction
errors in the brain and each processing stage has access to different
information on the reliability of the stimulus.

7.1 Summary
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In the fifth chapter I introduced a new paradigm to study
where, when and why people look at different parts of a visual
scene. We framed eye movements as a constant decision process,
deciding whether to exploit the current view and extract informa-
tion or to move on and further explore the scene. This balance
between exploitation and exploration defines the distribution of
fixation durations. We developed a new gaze-contingent viewing
paradigm that allows us not only to control the location of fixation,
but also the timing, that is, the point in time when subjects are
allowed to make an eye movement. In other words, we can control
the where and when of eye movements. At the same time, our
paradigm allows us to utilize reaction times as a proxy for the
state of the exploration-exploitation dilemma. In the experiment,
subjects observed the underlying stimulus through a 3° (visual
degree) aperture. After an experimentally controlled time, a new
aperture was visible and subjects continued exploring the image.
We observed an exponential decay between the controlled fixation
duration and the subsequent reaction time: Short fixation dura-
tions elicited longer choice times and vice versa. We interpreted
this as a successful interruption of the exploration-exploitation
process. Only after a prolonged fixation, all available information
was extracted. If we removed the stimulus during the exploitation
phase, the subjects’ visual system was not yet ready to move on.
In addition, in some trials we offered multiple future fixation loca-
tions which resulted in an increase of reaction time with increasing
number of locations. That is, similar to many decision making
tasks (formalized in Hick’s law, Hick, 1952), when offered with
more alternatives, humans tend to increase their decision time in a
logarithmic fashion. We concluded with a description of the merits
and limitations of this new exciting paradigm and sketch future
applications to the causal study of eye movements.

In the sixth chapter I introduced a tutorial to construct a
Bayesian hierarchical generative model. This model type has al-
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ready been used in other chapters (Chapter 3 & 5) but was not the
focus of these studies. Such models are becoming prominent in
many areas, mainly in statistics (Sorensen et al., 2016) and cogni-
tive modeling (MD Lee and EJ Wagenmakers, 2014). Here, I show
an application to the kinetics of Melanopsin (Spoida et al., 2016),
for instance a hierarchical model to fit multiple cells, a wavelength
dependency to investigate Melanopsin reaction to light of different
color, and a third state to investigate whether Melanopsin is bi-
or tri-stable. I showed how differences between parameters of
Melanopsin sourced from two different species can be included
into the model. I also discussed how this model can be improved
by adding physiological constraints on the parameters in form of
priors. Once the model is build, it is easy to interrogate the model
on how it would react in hypothetical scenarios. Taken together
with the statistical implementations we used in Chapter 3 and 5,
this tutorial-chapter shows how powerful and flexible hierarchical
Bayesian models are.

7.2 Predictions for eye movements, and
decision making in the blind spot

In this section I will discuss the results of two studies relating
to the reliability of internal models, specifically internal models of
blind spot percepts (Ehinger, Hausser, et al., 2017; Ehinger, Konig,
et al., 2015).

In Chapter 3, I introduced a study on perceptual decision
making. We were interested in how the brain relies on filled-in,
internally generated percepts. We showed a bias towards the
internal model in such decision making paradigm and interpreted
this bias in the sense, that the internal model (or equivalently, the

7.2 Predictions & Eye movements & Blind spots

225



226

filled-in percept) is attributed a higher reliability than the veridical

stimulus representation.

In Chapter 4, I introduce a study that shows that early pre-
diction errors do not differentiate between internal and veridical
predictions. In contrast, for late prediction errors, indicated by a
P300 electrophysiological correlate, we see a decreased prediction
error for the inferred percept. Generally, a decreased P300 ampli-
tude is associated with smaller reliability of the prediction (Polich,
2007; W Sommer et al., 1998; Rosenfeld et al., 2005). This is
clearly at odds with the previous study results: Making a predic-
tion only based on the behavioral decision making task, one would
expect that the prediction errors should be increased for blind spot
predictions compared to veridical ones and not either absent (early
prediction errors) or decreased (late prediction errors).

7.2.1 Early Prediction Errors

The missing early prediction errors can have a multitude of
explanations. Of course, interpreting compatibility of results with
an assumed Hj of no effect, does not allow one to interpret the
results as confirmatory to the Hy. Thus, first of all we need to dis-
cuss sampling errors. Especially with the small number of subjects
(n=15) in our study; it could be likely that we missed the effect in
this sample (nevertheless, each subject had 3000 trials in total). In
order to argue for the Hy, new Bayesian analyses would be needed
on this dataset. In general, EEG might not be able to pick up the
prediction signal due to physiological constraints of what can be
measured with EEG. A slight indication against this explanation
is the small effect of filled-in vs. non-filled peripheral stimulus
that we demonstrated in the same study (Ehinger, Konig, et al.,
2015).
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In order to understand the source of these discrepancies, I pro-
pose a new stationary experiment without eye-movements. In this
experiment [ would show a continuous stimulus monocularly in the
periphery while recording EEG. The stimulus should be filled-in or
veridical. I would then exchange the stimulus with the perpendicu-
lar stimulus as a veridical percept. This experiment could answer
whether prediction errors are different based on inferred and filled-
in information. Similar to the first control experiment in Chapter
4, one would need to take into account the different density of
photoreceptors for the temporal (blind spot) and nasal (veridical)
visual field, by additionally testing other areas. I propose this ex-
periment, which is conceptually very similar to our published study;,
for two reasons: 1) It is a conceptual replication and generalization
of the effects found in Ehinger, Konig, et al. (2015). 2) It removes
eye movements from the experiment with the idea to control the
fact that predictions for future eye movements are special. Indica-
tions that eye movements have a special status comes, for example,
from the literature on presaccadic remapping of receptive fields
(Rolfs et al., 2011).

7.2.2 Late Prediction Errors

In contrast to the early prediction errors, the late prediction
errors showed decreased reliability in the prediction over eye move-
ments. In order to try to explain this discrepancy, I assume that
each hierarchical level has access to different information, that is,
to different generative models. Support for this assumption comes
for example from optical illusions, where we have access to the
high-level concept of a stimulus being an illusion, nevertheless
we cannot influence our low-level percept. Thus, one explanation
for the discrepancy between larger surprise to unreliable stimuli,
but behavioral preference in decision making, is that in decision
making we do not have access to the full generative model. That

7.2 Predictions & Eye movements & Blind spots
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is, the brain puts a higher reliability on the stimulus, because the
internally generated representation has a higher signal-to-noise
ratio in itself. In the prediction over eye movement context, the
brain has additional access to the information that the prediction
was produced in the filled-in area and it is able to adjust its P300
response accordingly. This explanation is difficult to test. An experi-
ment is needed that combines decision making and eye-movements.
For instance, a filled-in or veridical stimulus could be shown in the
blind spot and then checked by performing an eye-movement. One
would ask, identical to Chapter 3 / Ehinger, Hausser, et al. (2017),
whether the first or second stimulus was continuous, and possibly
adjust the difficulty of the task by introducing noise or decreasing
the contrast of the inset. Of course recency effects and foveal
against peripheral resolution effects would need to be taken into
account. This experiment would allow to test whether predictions
over eye movements allow the access of special information for
decision making.

7.3 Eye movements and Predictions

In Chapter 4 we showed that prediction errors exist over eye
movements. We showed large prediction errors if the stimulus is
exchanged during the saccade (and thus was unpredicted). We can
only speculate if normal saccades also lead to prediction errors due
to the mismatch of peripheral and foveal information. I will make
this argument and show that there are conceptual indications
that this should be the case based on the theory of predictive
coding. There are some empirical findings on this. For instance,
it is long known, that the amplitude of the P1 (or A-response in
the literature) scales logarithmically with the size of a saccade
(Armington and Bloom, 1974; Thickbroom et al., 1991; Dimigen
et al., 2011; Dandekar, Privitera, et al., 2012). That is, larger
saccades have larger P1 responses. If we take into account that
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larger saccades also move the eye into a region that previously was
more eccentric in the periphery, this would fit our initial idea: Large
eye movements lead to less predictable stimuli, higher uncertainty
and larger prediction errors. Note that, that prediction errors can
be of equal size when certainty is high but the prediction is slightly
wrong, or when uncertainty is low but the prediction is completely
wrong. Predictions in the periphery are likely a middle ground
where uncertainty exists, but predictions are often accurate on the
coarse structures of the visual input (fine detail is not available
through peripheral vision).

Combining these ideas with eye movements of unrestricted
viewing paradigms, this means that prediction errors measured by
ERPs at locations that are well predicted by our internal model
should lead to small prediction errors. This allows for predictions
in future EEG studies with eye movements behavior. If eye move-
ments are guided to places with high uncertainty, it is likely that
initial prediction errors are high and subsequent "double checking"
saccades show weaker responses. To get more specific, one possible
experiment could be a search paradigm, where the target is only
shown after a certain number of saccades. This would allow to
compare responses to saccades at locations that were repeatedly
revisited. Because less uncertainty on the incoming information
exists at revisited locations, I would predict that the P1 response
should be smaller. In addition, if a target is gaze-contingently
revealed at a revisited fixation location, it should result in a larger
prediction error than a previously non-visited location. The guided-
viewing bubble paradigm introduced in chapter 5 would be the
ideal paradigm, it allows to control (enforce) refixations. This is
necessary because during free-viewing, refixations are likely not
only elicited by high uncertainty (Wilming, Harst, et al., 2013).
Combining the experimental ideas I developed throughout this
thesis allows for exiting new ways to study the brain.

7.3 Eye movements and Predictions
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7.4 Eye movements and Uncertainty

I proposed to use a search paradigm before. Trying to un-
derstand where subjects make eye movements to, will help us to
understand what feature the brain regards as important to sample.
One influential idea comes from the field of visual search and is
based on the minimization of uncertainty. Using Bayesian optimal
models as a comparison to human performance, Najemnik and
Geisler (2005) showed that humans tend to optimize certainty,
that is, minimize uncertainty. They used a visual search paradigm
where subjects needed to find a target hidden in noise. Subjects
prioritized places where the highest subjective uncertainty exist
(and thus the highest possibility that a target is hidden there).
This idea has recently been used successfully in several generative
models of eye movement behavior (Tatler, Brockmole, et al., 2017;
Schiitt et al., 2017) (see also K Friston, Adams, et al., 2012). The
guided-viewing paradigm presented in Chapter 5 could be used in
new search experiments to enhance the validity of these findings.
A future step is to analyze the data of our 45 subjects for not only
when they made saccades, but also which bubble they selected.
One analysis would be to check whether the paradigm also shows
optimal choice in the bubble-selection processes (optimal in a sense
of maximizing entropy of exploring an image). It is of course also
possible to use our paradigm to record a search paradigm and con-
trol both the time subjects are exposed to a distractor (or target)
as well as where they are allowed to search. I predict results in
parallel to our study: A causal dependency of the probability a sub-
jects can recognize a stimulus on the time it is visible. Also longer
reaction times to short forced fixation times and longer reaction
times when multiple future target locations are shown. In addition,
taking Najemnik and Geisler (2005) into account, subjects, when
confronted with multiple future target locations, should choose the
one that minimizes uncertainty.
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7.5 A Statistical Evolution in the
Cognitive Sciences

At the beginning of my thesis, a t-test seemed to be state of the
art in statistical inference of ERP research (and, often unfortunately,
it still is for some ERP literature). In the work presented here, I
want to emphasize several statistical advances; two of them (mixed
models and Bayesian statistics) are currently taking the field of
cognitive neuroscience by storm.

In this section, I want to highlight the role of robust statis-
tical methods. Robust statistical methods are methods that are
less severely influenced by outliers and thus represents the main
part of the data better. In chapter 4, I make extensive use of ro-
bust statistics (Wilcox, 2012). The classical statistical measures of
central tendency (e.g. mean) or of spread (e.g. variance) can be
heavily influenced by a single measurement point (an outlier). To
mitigate this problem, many modern methods are available. For
central location, one extreme example is the median, which is not
influenced by outliers, but makes certain mathematical procedures
unwieldy. Therefore, we make use of methods that take a compro-
mise between both extremes, for example the winsorized mean (see
Chapter 4.3 for an explanation). By taking a robust approach, one
does not loose as much power as by using non-parametric methods,
because we still assume the classical assumptions of normality of
the sampling distribution. Often only convenience and lack of
knowledge are the reasons why the mean is used over a winsorized

mean.

Next, I want to highlight the role of cluster-permutation test-
ing in ERP research. Especially with complex data like EEG, many
statistical challenges need to be solved. Today we have the appro-
priate tools and we should also employ them. Selecting channels

7.5 A Statistical Evolution in the Cognitive Sciences
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and time windows, after the data have been examined, can lead
to circular reasoning (J Kilner, 2013; Kriegeskorte, Simmons, PS
Bellgowan, et al., 2009). If no a priori information on the selection
of of channels and time windows are available, it is hard to test all
time points at each electrode due to the massive multiple compari-
son problem. In short, this problem occurs when many tests are
performed, and for each the type-I error is controlled only inde-
pendently from each other. Effective solutions are non-parametric
cluster permutation tests (Maris and Oostenveld, 2007), where one
does not test each time point x electrode, but connected cluster
of significant values over space and time. We used the classical
cluster permutation test in Chapter 2, and the successor Threshold-
Free Cluster Enhancement (TFCE, SM Smith and Nichols, 2009) in
Chapter 4.

Next, I want to highlight the role of mixed / hierarchical mod-
els in my and others research. In cognitive psychology, it is very
common to record data at two levels. One level is the trial level,
the second level is the subject level. A traditional approach for
these within-subject data is to aggregate over the trial level to
receive a single data point per subject followed by a statistical test
like the t-test or, in case of multiple values per subject, a repeated
measures ANOVA. The step of aggregating data is suboptimal as
soon as unbalanced number of trials or varying variance between
subjects exist. This step even becomes impossible if continuous
predictors on the trial level are used (e.g. forced fixation time or
saccade amplitude, Chapter 5). To solve this problem, most para-
metric statistical tests can be generalized to the linear model. A,
conceptually, simple extension is the mixed linear model (Gelman
and Hill, 2007). The mixed model is becoming the dominant model
in cognitive psychology (Bagiella et al., 2000; Quené and Van Den
Bergh, 2004; Richter, 2006; Baayen and Milin, 2010; Kliegl et al.,
2010) (for exemplar use, see Chapter 3, 5 and 6). At the cost
of computational complexity but with increased model flexibility,
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the mixed model incorporates unbalanced design with varying
variances without any further specifications. Because the linear
model is extremely flexible incorporating hierarchical models, mul-
tiple dependent variables, non-linear relations and non-normal
error distributions, it is currently superseding traditional analyses
methods.

Finally, I want to highlight role of Bayesian statistics. In my
opinion there are three main reasons why Bayesian statistics are
currently en vogue. First, we now have the computational power
to fit very flexible models. Second, the current focus is shifting
to parameter estimation and not hypothesis testing. And third,
Bayesian parameter estimates seem to have a direct interpretation
without Hj "tricks". These three points will now be discussed in
more detail. First, I devoted Chapter 6 to show the flexibility of
this approach. In Bayesian generative models everything is made
explicit, and thus transparent, due to the probabilistic programing
code that is used to implement the models !. Priors of the model
are equivalently transparent in this model code. Exchanging basic
properties of your model, e.g. assuming your error is normal vs.
gamma, is done very transparently by modifying a single line. In
the meantime, day-to-day statistics is made very simple because
of recent developments in open-source statistical packages like
brms (Biirkner, 2017), rstanarm (Stan Development Team, 2016)
or JASP (JASP Team, 2018). Second, there is a shift away from
p-values and towards confidence intervals and effect size estimates
(Kruschke, 2014). Effect size estimation is an instance where many
people would like to quantify the uncertainty and the size of the
parameter estimates they get from their model. This is exactly
what the posterior density of a Bayesian analysis represents. Thus
the second major benefit is the direct quantification of uncertainty
about a parameter. Third, in statistics many people intuitively
assume that the quantity of interest is p(|data). The probability of

IExcept when optimization for speed is relevant
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a parameter being in a certain value range, given the data. In order
to get this quantity, Bayes theorem has to be applied. Therefore,
in the Bayesian world view, the posterior estimates can be directly
interpreted as probabilities of the parameter.

These three advantages and a pragmatic view "to use what
seems to work" makes it very reasonable arguments to use Bayesian
statistic as the default case.

7.5.1 Frequentist and Bayesian statistics

If Bayesian data analysis has these benefits, why is not every-
one using them? For this, we have to first understand the frequen-
tist tradition of statistics. Frequentists restrict themselves on the
likelihood p(datal@), the probability of the data given a specific pa-
rameter (RA Fisher, 1922) after specifying a H, hypothesis. Fisher,
the founding father of frequentist statistics, distanced himself from
posterior probabilities (referred to as inverse probabilities):

The theory of inverse probability is founded upon an
error, and must be wholly rejected. (Fisher, 1925,
p-10)

The trouble for Fisher was, that in order to calculate p(f|data) o
p(data|0)p(8), the prior p(f) has to be "subjectively" specified. Sub-
jectively, because a seemingly uninformative uniform prior depends
on the parameterization of the problem, which he finds enough
reason to rejects the idea of priors (Aldrich et al., 2008; Fienberg
et al., 2006). He, in the same way as many frequentists, also argues
that hypotheses (replacing 6 with e.g. Hy) are either correct or
not correct in the real world, but do not have probabilities to be
correct. If one follows subjective Bayesians, a correct subjective
prior (incorporating everything there is to know about the prob-
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lem) allows one to directly interpret p(6|data) as the probability
that a parameter is in a certain range. Similar, for hypotheses it
allows to interpret p(H|data) as the probability that a hypothesis
H is true. This Bayesian interpretation of the result of a statistical
inference is the intuitive interpretation for many scientists. If one
follows the Bayesian interpretation strictly, an additional constraint
is needed in order to be allowed to interpret the posterior parame-
ter distribution as a probability of the parameter. The constraint
is, that everything needs to be incorporated into the prior, that is
a priori known about the parameter. This is usually not possible
and objective Bayesian approaches with non- or vaguely-informed
priors are used (Berger et al., 2006). This issue of pseudo-Bayes
(using more or less ad hoc weakly informed priors) can be relevant
in theory (Berger et al., 2006) but in practice often works well
(Gelman, Jakulin, et al., 2008).

7.6 An Open Science Evolution of the
Cognitive Sciences

Not only statistical practice is changing, but also an evolution
of scientific practice can be seen in recent years. This has a large
impact on my own way to do science and I will spend a few
paragraphs to discuss theses changes. The changes are under the
heading of Open Science and encapsulate two main ideas: Open
Access and Open Materials.

Open Access refers to the idea that the results (publications)
of a study paid for by public money should be open to the public.
This is currently not the case because most publications are behind
pay walls, that is, the public has to pay to read publications even
though it has already paid the one producing the publication. The
percentage (estimated in 2016) of open access publications up to
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the 90s was approximately 20% of articles. Since then, the number
has increased to 45% in 2015 (Piwowar et al., 2018). In practice,
this number is a bit higher, as many current manuscripts are also
available via public preprint repositories, university repositories or
private web pages.

Open Materials refers to the idea that the experimental code,
the analysis scripts and the data should be made publicly available.
This encourages reproducibility (the exact analysis can be repro-
duced by another scientist on the same data) as well as replicability
(the exact protocol can be replicated by another scientist on a new
dataset). It has been shown empirically, that enforcing that data
is available only upon request, is a poorer option compared to
making your data directly available. Stodden et al. (2018) showed
that in a sample of 204 articles published in Science, 40% of the
authors refused or ignored the request, even though Science has a
data-on-request guideline in place. For my own research, all of my
manuscripts are publicly accessible and only one of them was not
published as open access (Kietzmann, Ehinger, et al., 2016). In addi-
tion, most of my data, code and materials are published on the open
science framework and in github repositories. I also developed and
published several other repositories with visualization and analysis
tools during my PhD (https://github.com/behinger).

For me, a big benefit to go for open science is that all my
analysis choices are transparent. Other researchers can judge, and
possibly comment on, those choices and in the best case point out
mistakes or unknown limitations of the methods used. In the end,
science is supposed to be a self-correcting endeavor on the search
for an approximate truth. Making others judge your own work in a
transparent and as-impartial-as-possible light is for me an ethical
imperative in science.
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7.7 Concluding remarks

I will make one final argument in this thesis: The brain is an
extremely complex structure. It seems unlikely, that such a complex
system can be understood by a single discipline, by studying a sin-
gle paradigm or a single behavior. Cognitive Science, encompassing
many different disciplines, is therefore a very likely candidate to
understand the computational and algorithmic principles of the
brain. But it is probably not sufficient. More work and understand-
ing crossing scales, from neurons to systems is needed. What is
true for Cognitive Science is likely also true for Vision Science. I
want to conclude with the plea to study vision using a broad view
and multifaceted approaches.
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Appendix: Thesis Art

Throughout my PhD thesis, I got to work with many talented
students. They worked very hard to earn their degree, but their
final theses stayed hidden in a file drawer - in most cases never to be
looked at again. I wanted to change this and decided to transform
each thesis into a unique piece of art, which every student (and
I myself) can hang on the walls in their homes. Making this
"thesis-art" interesting enough will query friends and colleagues
to understand what is going on and spark discussions. Two other
benefits are apparent as well: I perform a type of public outreach
and I can properly thank my students for their hard work.

In the following I will shortly comment on the six pieces for
six students.

Katja Hausser

Katja wrote her Bachelor’s Thesis with me. She worked in
the project described in Chapter 2 and is a coauthor in Ehinger,
Hausser, et al. (2017). In her thesis-art, the stimulus used in the
study is visualized by the words of her thesis. That is, the whole
thesis is represented on the poster.
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Lilli Kaufhold

Lilli wrote her Master’s Thesis with me. She worked on
the project described in Chapter 4 and is a coauthor in Ehinger,
Kaufhold, et al. (2018). In her thesis-art, I recorded my eye-
movements while reading her thesis. These eye-movement pat-
terns are printed as a matrix of multiple multiples, describing all
spatial-decisions one made where to look next, while reading the
thesis.

Jiameng Wu

Meng wrote her Bachelor’s Thesis with me. She worked on
the project described in Chapter 2. She was looking at the effect
of saliency on the choice time. Therefore, I calculated several
saliency features (e.g. Contrast, Brightness) of her thesis and
overlayed them. This concept is an artistic approximation to a
saliency map.

Edoardo Pinzuti

Edoardo wrote his Master’s thesis with me. His work is not
described in this thesis. He implemented a matlab toolbox to anal-
yse directed interactions between complex systems. Because his
work touches Chaotic Attractors and Takens Theorem, I simulated
a dynamic attractor (a Lorenz System) and visualized it using the
text from his thesis.

Judith Schepers

Judith wrote her Bachelor’s Thesis with me. She worked on
the project described in Chapter 4. In her thesis-art, I visualized the

Chapter 7



guided-bubble paradigm. Because she generalized the paradigm
to more than five bubbles, many more bubbles are visible in the
thesis-art.

Maria Sokotushchenko

Maria wrote her Master’s Thesis with me. She worked on
a successor project to Chapter 2. In her thesis-art, I artistically
visualized the brain’s surprise response to a unexpected stimulus
change. This response is sorted by how fast subjects responded
(late on top, fast in the bottom)

Lisa-Marie Vortmann

Lisa wrote her Master’s Thesis with me. She worked on an

unrelated project based on SSVEP’s and Multiple Object Tracking.

In her thesis-art, I show several EEG signals filtered at the respective
SSVEP frequencies. Due to the discrete sampling, distinct lines
seem to appear - but in reality they do not exist. This is related to
Nyquist’s Theorem.
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