
Exercise F: Metropolis within Gibbs Sampler

Benedikt Ehinger

12. Januar 2017

Videos L,M: Gibbs

1 2D Metropolis

1

We want to sample from the following target function (you might want to
think of a posterior with two continuous variables X1 and X2. The function
could come from a complicated 'blackbox' model).

g(x1, x2) = |cos(
√
x1 ∗ x2)|50

With 0 ≤ x1 ≤ 20 and 0 ≤ x2 ≤ 20
We will start with a 2D metropolis sampler. The only di�erence to last

homework is, that the proposal distribution has to be 2-Dimensional now.
You can start with the following code:

g = function(x) {

if ((x[1]<0) || (x[1]>20) || (x[2]<0) || (x[2]>20))

return(0)

return(abs(cos(sqrt(x[1]*x[2])))^50)

}

M = 10000 # run length (number of scans)

X = c(... , ...) # starting values for X1 and X2

n_reject = 0

x1list = x2list = rep(NA,M) # allocate memory

for (i in 1:M) {

X_star = X + ... # New proposal sample in 2D

U = runif(1) # for accept/reject

alpha = g(X_star) / g(X) # for accept/reject

if (U < alpha)

X = X_star # accept proposal

1This exercise is based on code from Je�rey S. Rosenthal

1

else

n_reject = n_reject + 1

x1list[i] = X[1]

x2list[i] = X[2]

}

1. Fill in all the gaps in the example code. Add a 2D proposal function to
the code. For now we can use rnorm(2).

2. plot the resulting x1,x2 pairs of the posterior against each other. Use a
line-plot (r: plot(x,y,type='l'), matlab: plot(x,y,'-')) to see how the chain
evolves in the 2D Parameter space

3. Plot the density, use e.g. ggplot-histogram2d or histbin, or use matlabs
2D histogram function

4. We want to change the stepsize, i.e. change the proposal function a bit.
Multiply the normal-distribution sample of your proposal function with
0.1 - What do you observe? What happens if you let your programm run
multiple times with di�erent initial values (just observe your plot multiple
times).

1.1 Metropolis-within-Gibbs

We will now use Metropolis-within-Gibbs. This means, that the parameters are
not updated at the same time, i.e. a 2D-new sample is proposed and evaluated.
But instead we update each parameter (x1 and x2) sequentially. Sometimes this
is also caled blocked metropolis. Now we do not need a 2D proposal, but a single
1D one. In the best case, and with some smart math-skills (or a good book)
you could possibly �nd out, that you can sample from on of your parameters
marginal densities using for example inverse cumulative. This will speed up the
algorithm (because you don't need to to probabilistic accept-reject). In our case,
we are not that smart (or someone might be?) and we need to do a metropolis
step for each parameter/each gibbs step.

M = 10000 # run length (number of scans)

X = c(... , ...) # starting values for X1 and X2

n_reject = 0

x1list = x2list = rep(NA,2*M) # allocate memory (twice as much!)

for (i in 1:M) {

for (gibbsStep in seq(1,2)){

X_star = X

X_star[...] = X[...] + ... # New proposal sample in 1D

U = runif(1) # for accept/reject

alpha = g(X_star) / g(X) # for accept/reject

if (U < alpha)

2

X = X_star # accept proposal

else

n_reject = n_reject + 1

x1list[i*2+gibbsStep-1] = X[1]

x2list[i*2+gibbsStep-1] = X[2]

}

}

1. Fill in the code above.

2. Again, plot the chain in 2D with a line plot. Why does it look like it looks?

3. Calculate the accept-reject ratio. Which algorithm is more e�cient?

2 Fish-Sensitive Neurons in the jelly�sh 2

Imagine you are interested in how many �sh-selective neurons (n)there are in
the jelly�sh3. Fortunately, you �nd old data from some student projects that
mention they found 16,18,22,25 and 27 of such neurons. Unfortunately, you have
no idea how many neurons they tried (you don't know their success-rate) nor
in what time interval they tried them (you cannot use poisson statistics).

What is a good bayesian statistician to do? From previous experiences, you
know that students usually have a 10% chance to hit such a neuron. You forma-
lize this as a beta(2, 15) prior on θ. You also know that the maximal number of
neurons (nmax) cannot be higher than 56004. You truly do not know how many
�sh-selective neurons (n) there are, so you assume a constant/�at prior for the
number.

We can use metropolis-within-gibbs. In this case, we can sample directly the
θ parameter (as we know it is coming from a beta distribution). But it is a lot
more di�cult to sample the n parameter. Thus in that case we use a metropolis
stepp from the joint-binomial distribution.

We could try to implement this in STAN, but it is di�cult due to the dis-
creteness of the n-parameter 5

1. Fill in the gaps in the model below.

2. How can you summarize the posterior?

3. Play around with the data, what happens if you keep the mean of the data
constant (e.g. 1,42,20,18,41), but change the variance?

2this example is modi�ed from Bayesian Cognitive Modeling, Joint Posteriors
3this is totally not a made up research question
4https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
5but possible, if you are interested see: https://github.com/stan-dev/example-models/

blob/master/Bayesian_Cognitive_Modeling/ParameterEstimation/Binomial/Survey.stan

and consult the STAN-manual

3

 https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://github.com/stan-dev/example-models/blob/master/Bayesian_Cognitive_Modeling/ParameterEstimation/Binomial/Survey.stan
https://github.com/stan-dev/example-models/blob/master/Bayesian_Cognitive_Modeling/ParameterEstimation/Binomial/Survey.stan

g = function(data,theta,n){

if(n>5600 | n<max(data))

return(0)

dens = sapply(data,function(x) ...)

dens = prod(dens) # the samples are independent,

#we can simply multiply their densitie value

return(dens)

}

logit = function(x){return(log(x/(1-x)))}

invlogit = function(x){return(1/(1+exp(-x)))}

M = 10^5 # run length

THETA = 0.5 # starting value

N = 50 # starting value

thetalist = nlist = rep(NA,2*M)

data = (c(16,18,22,25,27))

for (i in 1:M) {

for (gibbsStep in 1:2) {

if(gibbsStep==1){

Gibbs Stepp

Instead of rbeta, we could also use the inverse cumulative

method here!

THETA = rbeta(1, ... , ...) # defines the prior + the current N.

From Jarad Niemi video c/03 we know that:

p(theta|data) = Beta(a+successes,b + N - successes)

Due to independence & conjugacy you can simply sum the data

Be sure to adjust N to your summed data!

}

if(gibbsStep==2){

Metropolis Step

This is very close to the previous examples

First we need to transform N from max(data):5600, to 0:1.

Ntrans = (N-max(data))/(5600-max(data))

Now we make a small stepp

N_star_trans = logit(Ntrans) + rnorm(1)

Now we transform back from the range 0:1 to max(data):5600

N_star = round(invlogit(N_star_trans)*(5600-max(data)) + max(data))

4

#By this procedure, N_star has to be between max(data) and 5600

U = runif(1) # for accept/reject

alpha = g(data,THETA,N_star) / g(data,THETA,N)

if (U < alpha)

N = N_star # accept proposal

}

save the current values

thetalist[2*i-2+gibbsStep] = THETA

nlist[2*i-2+gibbsStep] = N

}

}

library(ggplot2)

we want to extract the most likely value (MAP, Maximum A Posteriori)

a = hexbin::hexbin(nlist,thetalist) # you need the hexbin package for this one

nMAP = a@xcm[which.max(a@count)]

tMAP = a@ycm[which.max(a@count)]

plot a 2D histogram + the MAP value.

qplot(nlist,thetalist,geom="hex")+

geom_point(inherit.aes = F,aes(x=nMAP,y=tMAP),color='red'))+

xlim(c(0,2500))+

ylim(c(0,1))

PS: Hexbin Package: install.packages("hexbin"). It's just a fancy 2d-Histogram

5

	2D Metropolis
	Metropolis-within-Gibbs

	Fish-Sensitive Neurons in the jellyfish this example is modified from Bayesian Cognitive Modeling, Joint Posteriors

