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Videos K,L,M: MCMC
Recommended Reading Material:

� DBDA Chapter 7

� Statistical Rethinking Chapter 8

1 MCMCs

1.1 Metropolis

We are interested in the posterior P (θ|data). Our model/likelihood consists of
a simple binomial distribution with a single parameter θ. For now we use a �at
prior, it is the same value everywhere, i.e. we ignore the prior. The data are:

data = c(0,1,1,0,1,1,1,0,1,1)

Start with a single step of the Metropolis hasting algorithm: The evaluation

of f(x∗)
f(x) with the likelihood-function f , f(x) =

∏
dbinom(data, 1, x)1 If the

likelihood of f(x∗) is greater, we always take x∗ as our new sample, if not, we
take x with the probability equal to the ratio. This, simpli�ed, results in:

p(take− x∗ − instead− of − x) = min(1,
f(x∗)

f(x)
)

To evaluate this, sample a uniform random number and check whether it is
smaller than the probability above. If yes, accept the new x∗ else stay with x
for this iteration.

Use a starting value for your MCMC-chain of θ = 0.5. Repeat the whole
process for nIter = 106 iterations.

Plot the whole mcmc-chain and a histogram of the values. In what range
do we get the max P (θ|data)? If you want, try out di�erent data-vectors and
observe the results.

1you can also use f(x) = dbinom(sum(data), length(data), x) which is more e�cient but

does not make the multiplication explicit.
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1.2 Hamiltonian Monte Carlo using Stan - Introduction

We are starting to reach the truly interesting parts of bayesian parameter esti-
mation. We will use a softwarepackage called 'STAN'. You can get it under
http://mc-stan.org. The algorithm has one major drawback: Discrete para-
meters are (currently) only partially supported.

If you use R simply run

install.packages("rstan")

If you use matlab, follow the tutorial online. You need to install the command-
line tool "cmdstan"which is then called by acompanying matlab scripts.

For python run:

pip install pystan

In order to use STAN we need to specify our model in the STAN-Language.
STAN allows you to use all kinds of programming blocks to de�ne the model
(e.g. for, while, if etc.) but in many cases this is not even needed. An example
model for a simple gaussian distribution would go as follows:

model.stan='

data{ # block specifies all the variables that are given

int<lower=0> N; # number of datapoints

real y[N]; # list of datapoints (size N)

}

parameters{

real mu; # the parameter to be estimated e.g. p(mu|data)

}

model{

y ~ normal(mu,1); # y is sampled from a normal

# with unknown mu and sigma = 1

}

'

First we de�ne a data block, all variables from your R/Python/Matlab en-
vironment need to go in here. You need to specify the type, if you can the range
(e.g. <lower=0,upper=10>) and whether it is a single number or a list, as can
be seen in thee xample.

The next block is parameters. Here you specify all new variables that you
want to estimate using MCMC. In the exercise before, this would be θ. But here
it would be µ of a normal distribution.

The last block (for now, there are some others) ismodel. Here you specify how
parameters relate to each other. In our example there is only a single parameter
which parameterizes the mean of a normal distribution. But you can imagine
that you want to estimate the σ of the distribution as well.
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Let's call the model (either saved in a new �le or as a string) with a four
separate MCMC-chains and 1000 iterations each.

library(rstan)

## Loading required package: ggplot2

## rstan (Version 2.9.0-3, packaged: 2016-02-11 15:54:41 UTC, GitRev:

05c3d0058b6a)

## For execution on a local, multicore CPU with excess RAM we recommend

calling

## rstan_options(auto_write = TRUE)

## options(mc.cores = parallel::detectCores())

data = rnorm(100,3,1)

m = stan(model_code = model.stan,data=list(N = length(data),y = data),chains=4,iter=1000)

##

## SAMPLING FOR MODEL 'c3ff9a34b65be6baa4e18193a4843c77' NOW (CHAIN 1).

##

## Chain 1, Iteration: 1 / 1000 [ 0%] (Warmup)

## Chain 1, Iteration: 100 / 1000 [ 10%] (Warmup)

## Chain 1, Iteration: 200 / 1000 [ 20%] (Warmup)

## Chain 1, Iteration: 300 / 1000 [ 30%] (Warmup)

## Chain 1, Iteration: 400 / 1000 [ 40%] (Warmup)

## Chain 1, Iteration: 500 / 1000 [ 50%] (Warmup)

## Chain 1, Iteration: 501 / 1000 [ 50%] (Sampling)

## Chain 1, Iteration: 600 / 1000 [ 60%] (Sampling)

## Chain 1, Iteration: 700 / 1000 [ 70%] (Sampling)

## Chain 1, Iteration: 800 / 1000 [ 80%] (Sampling)

## Chain 1, Iteration: 900 / 1000 [ 90%] (Sampling)

## Chain 1, Iteration: 1000 / 1000 [100%] (Sampling)#

## # Elapsed Time: 0.004 seconds (Warm-up)

## # 0.004 seconds (Sampling)

## # 0.008 seconds (Total)

## #

##

## SAMPLING FOR MODEL 'c3ff9a34b65be6baa4e18193a4843c77' NOW (CHAIN 2).

##

## Chain 2, Iteration: 1 / 1000 [ 0%] (Warmup)

## Chain 2, Iteration: 100 / 1000 [ 10%] (Warmup)

## Chain 2, Iteration: 200 / 1000 [ 20%] (Warmup)

## Chain 2, Iteration: 300 / 1000 [ 30%] (Warmup)

## Chain 2, Iteration: 400 / 1000 [ 40%] (Warmup)

## Chain 2, Iteration: 500 / 1000 [ 50%] (Warmup)

## Chain 2, Iteration: 501 / 1000 [ 50%] (Sampling)

## Chain 2, Iteration: 600 / 1000 [ 60%] (Sampling)
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## Chain 2, Iteration: 700 / 1000 [ 70%] (Sampling)

## Chain 2, Iteration: 800 / 1000 [ 80%] (Sampling)

## Chain 2, Iteration: 900 / 1000 [ 90%] (Sampling)

## Chain 2, Iteration: 1000 / 1000 [100%] (Sampling)#

## # Elapsed Time: 0.004 seconds (Warm-up)

## # 0.004 seconds (Sampling)

## # 0.008 seconds (Total)

## #

##

## SAMPLING FOR MODEL 'c3ff9a34b65be6baa4e18193a4843c77' NOW (CHAIN 3).

##

## Chain 3, Iteration: 1 / 1000 [ 0%] (Warmup)

## Chain 3, Iteration: 100 / 1000 [ 10%] (Warmup)

## Chain 3, Iteration: 200 / 1000 [ 20%] (Warmup)

## Chain 3, Iteration: 300 / 1000 [ 30%] (Warmup)

## Chain 3, Iteration: 400 / 1000 [ 40%] (Warmup)

## Chain 3, Iteration: 500 / 1000 [ 50%] (Warmup)

## Chain 3, Iteration: 501 / 1000 [ 50%] (Sampling)

## Chain 3, Iteration: 600 / 1000 [ 60%] (Sampling)

## Chain 3, Iteration: 700 / 1000 [ 70%] (Sampling)

## Chain 3, Iteration: 800 / 1000 [ 80%] (Sampling)

## Chain 3, Iteration: 900 / 1000 [ 90%] (Sampling)

## Chain 3, Iteration: 1000 / 1000 [100%] (Sampling)#

## # Elapsed Time: 0.004 seconds (Warm-up)

## # 0.004 seconds (Sampling)

## # 0.008 seconds (Total)

## #

##

## SAMPLING FOR MODEL 'c3ff9a34b65be6baa4e18193a4843c77' NOW (CHAIN 4).

##

## Chain 4, Iteration: 1 / 1000 [ 0%] (Warmup)

## Chain 4, Iteration: 100 / 1000 [ 10%] (Warmup)

## Chain 4, Iteration: 200 / 1000 [ 20%] (Warmup)

## Chain 4, Iteration: 300 / 1000 [ 30%] (Warmup)

## Chain 4, Iteration: 400 / 1000 [ 40%] (Warmup)

## Chain 4, Iteration: 500 / 1000 [ 50%] (Warmup)

## Chain 4, Iteration: 501 / 1000 [ 50%] (Sampling)

## Chain 4, Iteration: 600 / 1000 [ 60%] (Sampling)

## Chain 4, Iteration: 700 / 1000 [ 70%] (Sampling)

## Chain 4, Iteration: 800 / 1000 [ 80%] (Sampling)

## Chain 4, Iteration: 900 / 1000 [ 90%] (Sampling)

## Chain 4, Iteration: 1000 / 1000 [100%] (Sampling)#

## # Elapsed Time: 0.004 seconds (Warm-up)

## # 0.003 seconds (Sampling)

## # 0.007 seconds (Total)
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## #

This simple model is quite fast. Let's look at the MCMC chains for our single
parameter.

cowplot::plot_grid(traceplot(m)+ylim(c(0,5))+geom_hline(yintercept=3),

stan_dens(m,separate_chains=T)+geom_vline(xintercept=3))
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The values for the chains overlap quite nicely, the MCMC chain converged.
Notice that only the last half of our iterations have been plotted, the �rst 500
iterations have been discarded. These are part of the warmup-period. In this
period STAN tries to estimate parameters to e�ciently sample the posterior
space.

1.3 HMC Exercise

1. Modify the normal-distribution example so that it �ts the binomial data
from the previous exercise. What you will need is a di�erent distribution:
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here we want to make use of the bernoulli distribution. As expected this
distribution only has a single parameter that is unknown. Be sure to de�ne
a proper range for the parameter and adapt the input data accordingly.

2. Plot the chains and the density similarily to the example. Compare it to
exercise 1.

3. Have a look at the RHat statistic, what does it do and why is it useful?

4. We want to add a prior with a truncated normal with µ = 0.5 and σ =
0.1 (you could plot it using "dnorm"[R] or "normpdf"[matlab]. Add the
following line to a new model de�nition in the "modelblock:

'theta ~ normal(0.5,0.1); # Defines that mu is sampled from a normal

# In STAN this specifices the prior for mu

# it is assumed truncated in stan because you

# defined a lower & upper bound in the

# "parameter"-block, haven\'t you?

'

}

Rerun the estimation and plot the posterior. Has the posterior estimate
changed adequately?

5. Have a look at the autocorrelation function of your chains ('stan_ac' from
the rstan package or use the 'acf' function in R). What does it tell you?
How does STAN compare to your metropolis-random walk from the pre-
vious exercise?
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